Abstract
The plausible impacts of climate change threat water resources sustainability in Mediterranean regions, where they are already under pressure. Hydrological modelling might aid assessing this threat, but realistic models are needed to guarantee accurate simulations. This work presents a hydrological model for the Guajaraz River basin (central Spain) using SWAT+. This basin contains the homonym reservoir and supplies the historic city of Toledo. An innovative calibration procedure, “inverse calibration”, was designed towards achieving a model that simulates the hydrological processes realistically rather than just providing satisfactory metrics: hard calibration results were filtered by two soft indices, the runoff coefficient and the groundwater contribution, to constrain parameter values. The methodology was successful, solved model structural problems (i.e. equifinality) and yielded a realistic model to simulate climate change. Then, five out of sixteen climate models were selected after calculating a suitability index, and they were simulated under two emissions scenarios (mid and high) and two time horizons (mid and long term). As expected, results foresee more severe hydrological impacts for the high emissions scenario and towards the end of the 21st century, with an average decrease in reservoir inflow up to 28% (or even up to 35% when analysing median values). Results also reveal that quickflow will be more affected than baseflow. These insights might aid on decision-making towards sustainable water management in a region where studies of this kind are scarce.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability
All the datasets (GIS layers, climate information, reservoir inflow and streamflow of neighbour catchments) used for setting up, calibrate and verify the model are freely available in the references cited in the manuscript. Climate change projections can be obtained from the AdapteCCa website (see References). The code used to parameterize and calibrate the model is available from the corresponding author upon reasonable request.
References
Acero Triana JS, Chu ML, Guzman JA, Moriasi DN, Steiner JL (2019) Beyond Model Metrics: the perils of calibrating hydrologic models. J Hydrol 578:124032
Agencia Estatal de Meteorología Proyecciones climáticas para el siglo XXI. Gráficos. Available via https://www.aemet.es/es/serviciosclimaticos/cambio_climat/result_graficos [Accessed 6-September-2023]
Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: Model development. J Am Water Resour Assoc 34:73–89
Arnold JG, Youssef MA, Yen H, White MJ, Sheshukov AY, Sadeghi AM et al (2015) Hydrological processes and model representation: impact of soft data on calibration. Trans ASABE 58(6):1637–1660
Bahremand A (2016) HESS opinions: advocating process modeling and de-emphasizing parameter estimation. Hydrol Earth Syst Sci 20(4):1433–1445
Bhattacharjee J, Marttila H, Molina Navarro E, Juutinen A, Tolvanen A, Haara A et al (2023) Impacts on water quality in the peatland dominated catchment due to foreseen changes in Nordic Bioeconomy Pathways. Sci Rep 13:6283
Bieger K, Arnold JG, Rathjens H, White MJ, Bosch DD, Allen PM et al (2017) Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. J Am Water Resour Assoc 53(1):115–130
Carstensen MV, Molina-Navarro E, Hashemi F, Kronvang B, Bieger K (2023) Modelling the impact of the nordic Bioeconomy pathways and climate change on water quantity and quality in a Danish River Basin. CATENA 222:106795
Centro de Estudios y Experimentación de Obras Públicas (CEDEX) Anuario de aforos. Available via https://ceh.cedex.es/anuarioaforos/default.asp [Accessed 4-September-2023]
Centro de Estudios Hidrográficos del CEDEX (CEH-CEDEX) (2017) Evaluación Del impacto del cambio climático en Los recursos hídricos y sequías en España. Informe Técnico para el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. CEDEX, Madrid
Chawanda CJ, Arnold J, Thiery W, van Griensven A (2020) Mass Balance Calibration and Reservoir representations for large-scale hydrological impact studies using SWAT+. Clim Change 163(3):1307–1327
Chazarra Bernabé A, Lorenzo Mariño B, Romero Fresneda R, Moreno García JV (2022) Evolución De Los climas de Köppen en España en El periodo 1951–2020. Nota técnica 37 de AEMET. Agencia Estatal de Meteorología, Madrid
Confederación Hidrográfica del Tajo (CHT) (2024) La cuenca, Medio Físico, Rasgos Climáticos. Available via https://www.chtajo.es/LaCuenca/MedioFisico/Paginas/RasgosClimaticos.aspx [Accessed 4-March-2024]
Cui Z, Wang Y, Zhang GJ, Yang M, Liu J, Wei L (2022) Effects of Improved Simulation of Precipitation on Evapotranspiration and its partitioning over land. Geophys Res Lett 49(5):e2021GL097353
Dile Y, Srinivasan R, George C (2023) QGIS Interface for SWAT+: QSWAT+. Version 2.4
Douville H, Raghavan K, Renwick J et al (2021) Water cycle changes. In: Masson-Delmotte V, Zhai P, Pirani A et al (eds) Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 1055–1210
Eliasson J (2015) The rising pressure of global water shortages. Nature 517(7532):6
European Parliament and Council (2000) Directive 2000/60/EC of 23 October 2000 establishing a framework for the Community action in the field of water policy. OJEU No. 327 (22-12-2000), pp 1–72
European Commission (2021) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions forging a climate-resilient Europe - the new EU Strategy on Adaptation to Climate Change. COM/2021/82, Document 52021DC0082
European Environmental Agency (EEA) (2021) Water resources across Europe - confronting water stress: an updated assessment. EEA Report No 12/2021. Publications Office of the European Union, Luxemburg
Food and Agriculture Organization of the United Nations (FAO) (1976) A framework for land evaluation. FAO soils bulletin 23. FAO, Rome
Francesconi W, Srinivasan R, Pérez-Miñana E, Willcock SP, Quintero M (2016) Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: a systematic review. J Hydrol 535:625–636
Fu B, Merrit WS, Croke BFW, Weber TR, Jakemann AJ (2019) A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ Model Softw 114:75–97
Grizzetti B, Pistocchi A, Liquete C, Udias A, Bouraoui F, Van De Bund W (2017) Human pressures and ecological status of European rivers. Sci Rep 7(1):1–11
Gutiérrez JM, Jones RG, Narisma GT et al (2021) Atlas. In: Masson-Delmotte V, Zhai P, Pirani A (eds). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Interactive atlas available via http://interactiveatlas.ipcc.ch/
Her Y, Yoo SH, Cho J, Hwang S, Jeong J, Seong C (2019) Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Sci Rep 9:4974
Instituto Geológico y Minero de España (IGME) (2009) Mapa Geológico de España Escala 1:50.000. Hoja 657 18–26 Sonseca. Instituto Geológico y Minero de España. Madrid
Instituto Geográfico Nacional (IGN) Sistema de Información de Ocupación del Suelo de España (SIOSE). Available via https://www.siose.es/ [Accessed 05-September-2023]
Instituto Nacional de Estadística (INE) (2024)Cifras oficiales de población de los municipios españoles en aplicación de la Ley de Bases del Régimen Local (Art. 17). Available via https://www.ine.es/dynt3/inebase/es/index.htm?padre=9041 [Accessed 06-June-2024]
Instituto Geográfico Nacional (IGN) (2018) Sistema De Información De Ocupación Del Suelo De España. Documento técnico SIOSE 2014. D.G. Instituto Geográfico Nacional, Equipo Técnico Nacional SIOSE. Ministerio de Fomento, Madrid, Spain
IPCC (2007) In: Pachauri RK, Reisinger A (eds) Climate Change 2007: synthesis report. Contribution of Working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, IPCC, Geneva, Switzerland
IPCC (2014) In: Pachauri RK, Meyer LA (eds) Climate Change 2014: synthesis report. Contribution of Working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, IPCC, Geneva, Switzerland
IPCC (2021) In: Masson-Delmotte V, Zhai P, Pirani A et al (eds) Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
ITGE (1991) Mapa Geológico de España Escala 1:50.000. Hoja 685 18–27 Los Yébenes. Instituto Tecnológico y Geominero de España. Madrid
Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E et al (2014) Europe. In: Barros VR, Field CB, Dokken DJ et al (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 1267–1326
Leone M, Gentile F, Lo Porto A, Ricci GF, Schürz C, Strauch M et al (2024) Setting an environmental flow regime under climate change in a data-limited Mediterranean basin with temporary river. J Hydrology: Reg Stud 52:101698
Lobanova A, Koch H, Liersch S, Hatterman FF, Krysanova V (2016) Impacts of changing climate on the hydrology and hydropower production of the Tagus River basin. Hydrol Process 30:5039–5052
Lobanova A, Liersch S, Tàbara JD, Koch H, Hattermann FF, Krysanova V (2017) Harmonizing human-hydrological system under climate change: a scenario-based approach for the case of the headwaters of the Tagus River. J Hydrol 548:436–447
López-Ballesteros A, Nielsen A, Castellanos-Osorio G, Trolle D, Senent-Aparicio J (2023) DSOLMap, a novel high-resolution global digital soil property map for the SWAT+ model: development and hydrological evaluation. CATENA 231:107339
Lyra A, Loukas A (2023) Simulation and evaluation of Water resources management scenarios under Climate Change for Adaptive Management of Coastal Agricultural watersheds. Water Resour Manage 37:2625–2642
Martínez-Pérez S, Molina-Navarro E, Martín-Loeches M, Sánchez-Gómez A, Sastre-Merlín A (2024) Hydrogeological characterization, quantification of water resources and hydrological modelling of the Guajaraz River basin within the framework of the Guardians of the Tagus project. Synthesis report. Technical report of the Water, Climate and Environment Research Group. University of Alcalá, Alcalá de Henares, Madrid
Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2(2):e1500323
Ministerio para la Transición Ecológica y el Reto Demográfico (MITERD) (2022) Visor de escenarios de cambio climático. Descripción de los datos. Versión 5.0
Molina Navarro E, Sastre Merlín A, Martín-Loeches Garrido M, Vicente R, Sánchez Gómez A, Martínez Pérez S (2021) Impacto del cambio climático en la España rural: Modelizando la afección a los recursos hídricos en una cuenca del centro peninsular. In: CONAMA 2020, Comunicaciones Científico Técnicas. Madrid, 4.12
Molina-Navarro E, Trolle D, Martínez-Pérez S, Sastre-Merlín A, Jeppesen E (2014) Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. J Hydrol 509:354–366
Molina-Navarro E, Andersen HE, Nielsen A, Thodsen H, Trolle D (2017) The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environ Model Softw 93:255–267
Molina-Navarro E, Nielsen A, Trolle D (2018) A QGIS plugin to tailor SWAT watershed delineations to lake and reservoir waterbodies. Environ Model Softw 108:67–71
Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: performance measures and evaluation criteria. Trans ASABE 58(6):1763–1785
Muleta MK (2012) Model performance sensitivity to objective function during automated calibrations. J Hydrol Eng 17(6):756–767
NASA Earth Observatory (2023) Spain Browned by Drought. Available via https://earthobservatory.nasa.gov/images/151366/spain-browned-by-drought [Accessed 5-September-2023]
Odour BM, Campo-Bescós MA, Lana-Renault N, Casalí J (2023) Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in Northern Spain. Agric Water Manage 285:108378
OpenGeoHub, OpenLandMap Available via https://opengeohub.org/about-openlandmap/ [Accessed 05-September-2023]
Pfannerstill M, Bieger K, Guse B, Bosch DD, Fohrer N, Arnold JG (2017) How to constrain multi-objective calibrations of the SWAT model using Water Balance Components. J Am Water Resour Assoc 53(3):532–546
Pulido-Velazquez D, García-Aróstegui JL, Molina JL, Pulido-Velazquez M (2015) Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate? Hydrol Process 29(6):828–844
Rouholahnejad E, Abbaspour K, Srinivasan R, Bacu V, Lehmann A (2014) Water resources of the Black Sea Basin at high spatial and temporal resolution. Water Resour Res 50(7):5866–5885
Sánchez-Gómez A, Martínez-Pérez S, Pérez-Chavero FM, Molina-Navarro E (2022) Optimization of a SWAT model by incorporating geological information through calibration strategies. Optim Eng 23(4):2203–2233
Sánchez-Gómez A, Martínez-Pérez S, Leduc S, Sastre-Merlín A, Molina-Navarro E (2023) Streamflow components and climate change: lessons learnt and energy implications after hydrological modeling experiences in catchments with a Mediterranean climate. Energy Rep 9:277–291
Sánchez-Gómez A, Bieger K, Schürz C, Martínez-Pérez S, Rathjens H, Molina-Navarro E (2024a) Hydrovars: an R tool to collect hydrological variables. J Hydroinformatics 26:1150–1166
Sánchez-Gómez A, Schürz C, Molina-Navarro E, Bieger K (2024b) Groundwater modelling in SWAT+: Considerations for a realistic baseflow. Groundw Sustain Dev 26:101275
Sastre-Merlín A, Molina-Navarro E, Sánchez-Gómez A, Herrera A, García-Bautista A, Cano A, Martínez-Pérez S (2022) Natural water sanctuaries: How hydrological monitoring and modelling can support an initiative to preserve/recover water bodies at risk. In: Proceedings of the 39th IAHR World Congress, Granada, Spain, pp 3050–3056
Schürz C (2019) SWATplusR: Running SWAT2012 and SWAT+ Projects in R., R package version 0.2.7. Available via https://github.com/chrisschuerz/SWATplusR, https://doi.org/10.5281/zenodo.3373859
Senent-Aparicio J, López-Ballesteros A, Cabezas F, Pérez-Sánchez J, Molina-Navarro E (2021a) A Modelling Approach to Forecast the Effect of Climate Change on the Tagus–Segura Interbasin Water transfer. Water Resour Manage 35:3791–3808
Senent-Aparicio J, Jimeno-Sáez P, López-Ballesteros A, Giménez JG, Pérez-Sánchez J, Cecilia JM, Srinivasan R (2021b) Impacts of swat weather generator statistics from high-resolution datasets on monthly streamflow simulation over Peninsular Spain. J Hydrology: Reg Stud 35:100826
Suntory B & Food Spain. Suntory Beverage & Food Spain presenta ‘Guardianes del Tajo’, su primer santuario natural del agua en España. Available via https://www.suntorybeverageandfood-europe.com/es-ES/spain/noticias/actualidad/detail/suntory-beverage-food-spain-presenta-guardianes-del-tajo-su-primer-santuario-natural-del-agua-en-espa-a/9223bfa2-511f-11ed-ad01-befa4c95df14 [Accessed 05-March-2024]
Suntory Holdings Natural Water Sanctuary (Water Resource Cultivation/ Preserving Biodiversity). Available via https://www.suntory.com/csr/env_water/forest/ [Accessed 17-December-2023]
Tan ML, Gassman PW, Yang X, Haywood JA (2020) Review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv Water Resour 143:103662
Texas AM University (TAMU), USDA. SWAT+ IO Documentation. Available via https://swatplus.gitbook.io/docs/user/io [Accessed 05-September-2023]
Trolle D, Hamilton DP, Hipsey MR, Bolding K, Bruggeman J, Mooji WM et al (2012) A community-based framework for aquatic ecosystem models. Hydrobiologia 683:25–34
Tsakiris G (2015) The status of the European waters in 2015: a review. Environ Processes 2(3):543–557
United Nations (UN) (2003) Sustainable Development Goal 6 on water and sanitation. Available via https://sdg6data.org/ [Accessed 05-September-2023]
Acknowledgements
This study has been supported by Suntory Holdings, Suntory Beverage and Food Spain under the “Guardianes del Tajo” project, through a research contract with Mediodes Consultoría Ambiental y Paisajismo S.L. (contract reference 2022/121). Alejandro Sánchez-Gómez received additional support from the University of Alcalá (UAH) PhD Fellowships Programme. The authors want to thank Christoph Schürz and Katrin Bieger for generously sharing their knowledge about SWAT+ calibration and SWATplusR application, and also Antonio Sastre Merlín and Miguel Martín-Loeches for their valuable comments about hydrogeological characteristics of the study area.
Funding
This work was supported by Suntory Holdings, Suntory Beverage and Food Spain under the “Guardianes del Tajo” project, through a research contract with Mediodes Consultoría Ambiental y Paisajismo S.L. (contract reference 2022/121). Author ASG has received research support from the University of Alcalá PhD Fellowships Programme.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Silvia Martínez-Pérez was responsable of funding acquisition and project management. Data collection was performed by Alejandro Sánchez-Gómez and Eugenio Molina-Navarro, who also designed the calibration methodology. Alejandro Sánchez-Gómez was in charge of data curation, processing and representation. All authors analysed and discussed the results. The first draft of the manuscript was written by Eugenio Molina-Navarro and all authors commented and revised it, approving the final manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Molina-Navarro, E., Sánchez-Gómez, A. & Martínez-Pérez, S. Innovating on Hydrological Modelling Calibration Towards a Realistic Simulation of Climate Change Impacts on Water Resources. Earth Syst Environ 9, 901–918 (2025). https://doi.org/10.1007/s41748-024-00462-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41748-024-00462-5
