Skip to main content

Potential Effects of Spatio-Temporal Temperature Variation for Monitoring Coffee Leaf Rust Progress Under CMIP6 Climate Change Scenarios

Abstract

Plant diseases occur in all regions of the globe where there are susceptible hosts, aggressive and virulent pathogens, and a favorable environment. We aimed to evaluate potential effects of temperature variation on the monocyclic and polycyclic processes of coffee leaf rust in susceptible Arabica coffee cultivars cultivated in Minas Gerais state, Brazil. Historical monthly mean air temperature data, from 1970–2000, was downscaled and used as the temperature reference period and maximum and minimum temperature for four future periods, 2021–2040, 2041–2060, 2061–2080, and 2081–2100 (SSP126 scenario) from Coupled Model Intercomparison Project Phase 6 (CMIP6) were used to characterize the future mean air temperature variation were used in the modeling of areas favorable to the progress of coffee leaf rust in Minas Gerais using spatial data techniques. Digital elevation model was considered for downscaling climate data. A non-linear regression model simulating the monocyclic process of coffee leaf rust was used to simulate the potential progress of the disease in susceptible cultivars under the different scenarios evaluated. In general, coffee leaf rust progress increased in susceptible cultivars located in areas with higher ground elevation, with emphasis in the south of the state, as well as in the main Arabica coffee producing regions. There was a reduction of areas favorable to rust in the north of the state due to temperature increase considering climate change scenario, however, new areas in the south of the state became more favorable to the disease. In general, in Minas Gerais state, the temperature will increase between periods from 2021 to 2040, 2041 to 2060, 2061 to 2081, and from 2081 to 2100, by 1.2 °C, 0.6 °C, 0.2 °C, and 0.1 °C, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, Oxford

    Google Scholar 

  • Akutsu M (1981) Relação de funções climáticas e bióticas com a taxa de infecção da ferrugem do cafeeiro (hemileia vastatrix berk. Et br.)

  • Alves MC, Silva FM, Pozza EA, Oliveira MS (2009) Modeling spatial variability and pattern of rust and brown eye spot in coffee agroecosystem. J Pest Sci 82:137–148. https://doi.org/10.1007/s10340-008-0232-y

    Article  Google Scholar 

  • Alves MC, Carvalho LG, Pozza EA, Sanches L, Maia JCS (2011) Ecological zoning of soybean rust, coffee rust and banana black sigatoka based on Brazilian climate changes. Proc Environ Sci 6:35–49. https://doi.org/10.1016/j.proenv.2011.05.005

    Article  Google Scholar 

  • Alves MC, Silva FM, Sanches L, Carvalho LG, Ferraz GAS (2013) Geospatial analysis of ecological vulnerability of coffee agroecosystems in Brazil. Appl Geomat 5:87–97. https://doi.org/10.1007/s12518-013-0101-0

    Article  Google Scholar 

  • Alves MC (2006) Geoestatística e sistemas’fuzzy’na proteção de plantas (PhD thesis). Universidade Federal de Lavras, Lavras.

  • Avelino J, Rivas Platero GG (2013) La roya anaranjada del cafeto. http://hal.archives-ouvertes.fr/hal-1071036.

  • Bebber DP, Castillo ÁD, Gurr SJ (2016) Modelling coffee leaf rust risk in Colombia with climate reanalysis data. Philoso Trans R Soc B Biol Sci 371:20150458. https://doi.org/10.1098/rstb.2015.0458

    Article  Google Scholar 

  • Boyd IL (2012) The art of ecological modeling. Science 337:306–307. https://doi.org/10.1126/science.1225049

    Article  Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology, 1st edn. John Wiley & Sons Inc, New York

    Google Scholar 

  • Carter TR, Saarikko RA, Niemi KJ (1996) Assessing the risks and uncertainties of regional crop potential under a changing climate in Finland. Agric Food Sci 5:329–350. https://doi.org/10.23986/afsci.72750

    Article  Google Scholar 

  • Chakraborty S, Murray G, Magarey P, Yonow T, Obrien R, Croft B, Barbetti M, Sivasitham-Param K, Old K, Dudzinski M, Sutherst RW, Penrose LJ, Archer C, Emmett RW (1998) Potential impact of climate change on plant diseases of economic significance to Australia. Aust Plant Pathol 27:15–35. https://doi.org/10.1071/AP98001

    Article  Google Scholar 

  • Chalfoun SM, Pereira MC, Carvalho VLD (2001) Effect of weather changes on coffee rust (Hemileia vastatrix BERK & BR.) progresse. Cienc Agrotecnol 25:1248–1252

    Google Scholar 

  • Coakley SM, Scherm H (1996) Plant disease in a changing global environment. Aspects Appl Biol 2:227–238

    Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678. https://doi.org/10.1126/science.250.4988.1669

    Article  Google Scholar 

  • Decorps JP (2021) GADMTools: easy use of ’GADM’ maps

  • Duniway J (1980) Role of biometeorology in integrated pest ’management soil–plant–water relations and disease. Proc Biometeorol Integr Pest Manag

  • Duthie JA (1997) Models of the response of foliar parasites to the combined effects of temperature and duration of wetness. Phytopathology 87:1088–1095. https://doi.org/10.1094/PHYTO.1997.87.11.1088

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Folland CK, Karl TR, Jim Salinger M (2002) Observed climate variability and change. Weather 57:269–278

    Article  Google Scholar 

  • Fuhrer J (2003) Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agr Ecosyst Environ 97:1–20. https://doi.org/10.1016/S0167-8809(03)00125-7

    Article  Google Scholar 

  • Garçon CLP, Zambolim L, Mizubuti ESG, Vale FXR, Costa H (2004) Coffee leaf rust control based on rust severity values. Fitopatol Bras 29:486–491. https://doi.org/10.1590/s0100-41582004000500003

    Article  Google Scholar 

  • Ghini R (2005) Mudanças climáticas globais e doenças de plantas, 1st edn. Embrapa - Meio Ambiente, Jaguariúna

    Google Scholar 

  • Ghini R, Hamada E, Júnior MJP, Gonçalves RRV (2011) Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathol 37:85–93

    Article  Google Scholar 

  • Goudriaan J, Zadoks JC (1995) Global climate change: modelling the potential responses of agro-ecosystems with special reference to crop protection. Environ Pollut 87:215–224. https://doi.org/10.1016/0269-7491(94)P2609-D

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. https://doi.org/10.1126/science.1244693

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • IBGE (2020) Resident population by units of the Federation. Estimates of resident population in brazil and federation units with reference date July 1. IBGE.

  • IBGE (2021) Produção agrícola municipal.

  • Jones A (1986) Role of wet periods in predicting foliar diseases. Plant Dis Epidemiol 1:87–100

    Google Scholar 

  • Kenny GJ, Harrison PA, Parry ML (1993) The effect of climate change on agricultural and horticultural potential in Europe. Environmental change unit University of Oxford, Oxford

    Google Scholar 

  • Kushalappa AC (1983) Application of survival ratio for monocyclic process of Hemileia vastatrix in predicting coffee rust infection rates. Phytopathology 73:96. https://doi.org/10.1094/phyto-73-96

    Article  Google Scholar 

  • Kushalappa AC (1989) Advances in coffee rust research. Ann Rev Phytopathol 2:503–531

    Article  Google Scholar 

  • Kushalappa AC, Martins CP (1980) Incubation and generation periods for Hemileia vastatrix on coffee in Viçosa, Minas Gerais. Fitopatol Bras 5:177–183

    Google Scholar 

  • Melugin Coakley S (1995) Biospheric change: will it matter in plant pathology? Can J Plant Path 17:147–153. https://doi.org/10.1080/07060669509500706

    Article  Google Scholar 

  • Neilson RP, Pitelka LF, Solomon AM, Nathan R, Midgley GF, Fragoso JMV, Lischke H, Thompson K (2005) Forecasting regional to global plant migration in response to climate change. Bioscience 55:749–759. https://doi.org/10.1641/0006-3568(2005)055%5B0749:FRTGPM%5D2.0.CO;2

    Article  Google Scholar 

  • Patterson DT, Westbrook JK, Joyce RJV, Lingren PD, Rogasik J (1999) Weeds, insects, and diseases. Clim Change 43:711–727. https://doi.org/10.1023/A:1005549400875

    Article  Google Scholar 

  • Pinto ACS, Pozza EA, de Souza PE, Pozza AAA, Talamini V, Boldini JM, Santos FS (2002) Description of epidemics of coffee rust with neural networks. Fitopatol Bras 27:517–524

    Article  Google Scholar 

  • Pires MSO, Alves MC, Pozza EA (2020) Multispectral radiometric characterization of coffee rust epidemic in different irrigation management systems. Int J Appl Earth Obs Geoinf 86:102016. https://doi.org/10.1016/j.jag.2019.102016

    Article  Google Scholar 

  • Rodrigues RR, Taschetto AS, Sen Gupta A, Foltz GR (2019) Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat Geosci 12:620–626. https://doi.org/10.1038/s41561-019-0393-8

    Article  Google Scholar 

  • Sá Júnior A, Carvalho LG, Silva FF, Alves MC (2012) Application of the köppen classification for climatic zoning in the state of minas gerais, brazil. Theoret Appl Climatol 108:1–7. https://doi.org/10.1007/s00704-011-0507-8

    Article  Google Scholar 

  • Scherm H, Yang XB (1995) Interannual variations in wheat rust development in China and the United States in relation to the el niño/southern oscillation. Phytopathology (USA)

  • Séférian R, Nabat P, Michou M, Saint-Martin D, Voldoire A, Colin J, Decharme B, Delire C, Berthet S, Chevallier M, Sénési S, Franchisteguy L, Vial J, Mallet M, Joetzjer E, Geoffroy O, Guérémy JF, Moine MP, Msadek R, Ribes A, Rocher M, Roehrig R, Salas-y-Mélia D, Sanchez E, Terray L, Valcke S, Waldman R, Aumont O, Bopp L, Deshayes J, Éthé C, Madec G (2019) Evaluation of CNRM earth system model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J Adv Model Earth Syst 11:4182–4227. https://doi.org/10.1029/2019MS001791

    Article  Google Scholar 

  • Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualization, 3rd edn. Pearson Prentice Hall, Essex

    Google Scholar 

  • Sutton J, Gillespie T, Hildebrand P (1984) Monitoring weather factors in relation to plant disease. Plant Dis 68:78–84

    Article  Google Scholar 

  • Torres Castillo NE, Melchor-Martínez EM, Ochoa Sierra JS, Ramirez-Mendoza RA, Parra- Saldívar R, Iqbal HMN (2020) Impact of climate change and early development of coffee rust—An overview of control strategies to preserve organic cultivars in Mexico. Sci Total Environ 738:140225. https://doi.org/10.1016/j.scitotenv.2020.140225

    Article  Google Scholar 

  • Vale FXR, Costa LC, Liberato J, Dias A (2004) Influência do clima no desenvolvimento de doenças de plantas. In: Perfil E (ed) Epidemiologia Aplicada Ao Manejo de Doenças de Plantas. Belo Horizonte, Berlin, pp 47–87

    Google Scholar 

  • Vancutsem C, Achard F, Pekel J-F, Vieilledent G, Carboni S, Simonetti D, Gallego J, Aragão LEOC, Nasi R (2021) Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci Adv 7:1603. https://doi.org/10.1126/sciadv.abe1603

    Article  Google Scholar 

  • Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F, Goward SN, Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail PS, Vermote EF, Vogelmann J, Wulder MA, Wynne R (2008) Free access to landsat imagery. Science 320:1011a–1011a. https://doi.org/10.1126/science.320.5879.1011a

    Article  Google Scholar 

  • Zambolim L (2005) Doenças do cafeeiro (Coffea arabica e C. canephora). In: Kimati H (ed) Manual de Fitopatologia: Doenças Das Plantas Cultivadas. CERES, São Paulo, pp 165–180

    Google Scholar 

  • Zambolim L (2016) Current status and management of coffee leaf rust in Brazil. Trop Plant Pathol 41:1–8. https://doi.org/10.1007/s40858-016-0065-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo de Carvalho Alves.

Ethics declarations

Conflict of interest

Author MCA declares that he has no conflict of interest. Author LS declares that she has no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Alves, M., Sanches, L. Potential Effects of Spatio-Temporal Temperature Variation for Monitoring Coffee Leaf Rust Progress Under CMIP6 Climate Change Scenarios. Earth Syst Environ 6, 421–436 (2022). https://doi.org/10.1007/s41748-021-00286-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-021-00286-7

Keywords

  • Epidemiology
  • WorldClim
  • Shared socioeconomic pathways
  • CNRM-ESM2-1 model