Skip to main content

Groundwater Vulnerability Assessment Through a Modified DRASTI-LU Framework: Case Study of Saiss Basin in Morocco

Abstract

The groundwater vulnerability assessment is an effective tool for protecting groundwater from pollution. The objective of this study is to determine the groundwater vulnerability of the Plio-Quaternary aquifer to pollution in the Saiss basin of Morocco using the DRASTI-LU framework. As validation of groundwater vulnerability map using the Pearson correlation between nitrate (NO3) concentrations observed at 51 wells and corresponding vulnerability indices calculated showed a poor correlation coefficient (r = 0.35, p < 0.01), the rates and weights of each DRASTI-LU framework parameter were modified using the Wilcoxon rank-sum test and single sensitivity analysis. Afterwards the vulnerability indices were calculated using the modified rates [DRASTI-LU(R)], the modified weights [DRASTI-LU(W)], and both modified rates and weights [DRASTI-LU(RW)]. According to the results, the modification of the rates provided significantly improved vulnerability map as compared to DRASTI-LU(W) and DRASTI-LU(RW). Based on DRASTI-LU(R), four vulnerability classes were identified, namely very low, low, medium, and high, with a dominance of the medium vulnerability class. Furthermore, the sensitivity analysis applied to the DRASTI-LU(R) revealed that land use was the most effective parameter, while topography and soil media were the least effective parameters in the groundwater vulnerability assessment. The current research can support the environment-related groundwater management and planning in the study region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ahirwar S, Shukla JP (2018) Assessment of groundwater vulnerability in upper Betwa river watershed using GIS based DRASTIC model. J Geol Soc India 91(3):334–340. https://doi.org/10.1007/s12594-018-0859-0

    Article  Google Scholar 

  2. Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS Remote Sensing and DRASTIC. Appl Geogr 23(4):303–324. https://doi.org/10.1016/j.apgeog.2003.08.007

    Article  Google Scholar 

  3. Alam F, Umar R, Ahmed S, Dar FA (2012) A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain India. Arab J Geosci 7(3):927–937. https://doi.org/10.1007/s12517-012-0796-y

    Article  Google Scholar 

  4. Albinet M, Margat J (1970) Cartographie de la vulnérabilité à la pollution des nappes d’eau souterraines. Bull BRGM 2ème série section 3(4):13–22

  5. Aller L, Bennett T, Lehr JH, Petty RH, Hackett G (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings. USEPA Report 600/2- 87/035, Robert S Kerr Environmental Research Laboratory, Ada, Oklahoma

  6. Amil A, Avcı P, Çil A, Muhammetoğlu A, Özyurt NN (2019) Significance of validation for karst aquifers’ vulnerability assessments: Antalya Travertine Plateau (Turkey) application. J Contam Hydrol. https://doi.org/10.1016/j.jconhyd.2019.103557

    Article  Google Scholar 

  7. Asadi P, Ataie-Ashtiani B, Beheshti A (2017) Vulnerability assessment of urban groundwater resources to nitrate: the case study of Mashhad Iran. Environ Earth Sci 76(1):41. https://doi.org/10.1007/s12665-016-6357-z

    Article  Google Scholar 

  8. Asfaw D, Ayalew D (2020) Modeling megech watershed aquifer vulnerability to pollution using modified DRASTIC model for sustainable groundwater management Northwestern Ethiopia. Groundw Sustain Dev 11:100375. https://doi.org/10.1016/j.gsd.2020.100375

    Article  Google Scholar 

  9. Baalousha H (2006) Vulnerability assessment for the Gaza Strip Palestine Using DRASTIC. Environ Geol 50(3):405–414. https://doi.org/10.1007/s00254-006-0219-z

    Article  Google Scholar 

  10. Barzegar R, Moghaddam AA, Baghban H (2015) A supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer Iran. Stoch Environ Res Risk Assess 30(3):883–899. https://doi.org/10.1007/s00477-015-1088-3

    Article  Google Scholar 

  11. Barzegar R, Asghari Moghaddam A, Adamowski J, Nazemi AH (2019) Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Environ Sci Pollut Res 26:8325–8339. https://doi.org/10.1007/s11356-019-04252-9

    Article  Google Scholar 

  12. Benabdelouahab S, Salhi A, Himi M, Stitou El Messari JE, Casas Ponsati A, Mesmoudi H, Benabdelfadel A (2018) Using resistivity methods to characterize the geometry and assess groundwater vulnerability of a Moroccan coastal aquifer. Groundw Sustain Dev 7:293–304. https://doi.org/10.1016/j.gsd.2018.07.004

    Article  Google Scholar 

  13. Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco. J Hydrol 352(3–4):267–287. https://doi.org/10.1016/j.jhydrol.2008.01.022

    Article  Google Scholar 

  14. Chandrashekhar H, Adiga S, Lakshminarayana V, Jagdeesha CJ, Nataraju C (1999) A case study using the model ‘DRASTIC’ for assessment of groundwater pollution potential. In: Proceedings of the ISRS national symposium on remote sensing applications for natural resources, Bagalore

  15. Chenini I, Zghibi A, Kouzana L (2015) Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. J Afr Earth Sci 109:11–26. https://doi.org/10.1016/j.jafrearsci.2015.05.008

    Article  Google Scholar 

  16. Chitsazan M, Akhtari Y (2008) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran Plain, Khuzestan. Iran Water Resour Manag 23(6):1137–1155. https://doi.org/10.1007/s11269-008-9319-8

    Article  Google Scholar 

  17. Civita M, De Maio M (1997) SINTACS Un sistema parametrico per la valutazione e la cartografia della vulnerabilita` degli acquiferi all’inquinamento, Metodologia and Automatizzazione. 60 Pitagora Editrice, Bologna

  18. Dizaji AR, Hosseini SA, Rezaverdinejad V, Sharafati A (2020) Groundwater contamination vulnerability assessment using DRASTIC method, GSA, and uncertainty analysis. Arab J Geosci 13(14):645. https://doi.org/10.1007/s12517-020-05650-x

    Article  Google Scholar 

  19. Elmeknassi M, El Mandour A, Elgettafi M, Himi M, Tijani R, El Khantouri FA, Casas A (2021) A GIS-based approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Bou-Areg and Gareb aquifers, northeastern Morocco. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-14336-0

    Article  Google Scholar 

  20. Essahlaoui A, Sahbi H, Bahi L, El-Yamine N (2001) Reconnaissance de la structure géologique du bassin de saïss occidental, Maroc, par sondages électriques. J Afr Earth Sci 32(4):777–789. https://doi.org/10.1016/s0899-5362(02)00054-4

    Article  Google Scholar 

  21. Fekkoul A, Zarhloule Y, Boughriba M, Barkaoui A, Jilali A, Bouri S (2012) Impact of anthropogenic activities on the groundwater resources of the unconfined aquifer of Triffa plain (Eastern Morocco). Arab J Geosci 6(12):4917–4924. https://doi.org/10.1007/s12517-012-0740-1

    Article  Google Scholar 

  22. Foster SSD (1987) Fundamental concepts in aquifer vulnerability pollution risk and protection strategy. Proceedings of International Conference: vulnerability of soil and groundwater to pollutants. Noordwijk, The Netherlands

  23. Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment usinhg overlay and index methods. Environ Geol 39(6):549–559. https://doi.org/10.1007/s002540050466

    Article  Google Scholar 

  24. Hamza MH, Added A, Rodriguez R, Abdeljaoued S, Ben Mammou A (2007) GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras JebelRaf Raf aquifer, Northern Tunisia). J Environ Manag 84:12–19

    Article  Google Scholar 

  25. Huan H, Wang J, Teng Y (2012) Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Sci Total Environ 440:14–23. https://doi.org/10.1016/j.scitotenv.2012.08.037

    Article  Google Scholar 

  26. Jafari SM, Nikoo MR (2016) Groundwater risk assessment based on optimization framework using DRASTIC method. Arab J Geosci 9(20):742. https://doi.org/10.1007/s12517-016-2756-4

    Article  Google Scholar 

  27. Jang W, Engel B, Harbor J, Theller L (2017) Aquifer vulnerability assessment for sustainable groundwater management using DRASTIC. Water 9(10):792. https://doi.org/10.3390/w9100792

    Article  Google Scholar 

  28. Jia Z, Bian J, Wang Y, Wan H, Sun X, Li Q (2019) Assessment and validation of groundwater vulnerability to nitrate in porous aquifers based on a DRASTIC method modified by projection pursuit dynamic clustering model. J Contam Hydrol. https://doi.org/10.1016/j.jconhyd.2019.103522

    Article  Google Scholar 

  29. Kadkhodaie F, Asghari Moghaddam A, Barzegar R, Gharekhani M, Kadkhodaie A (2019) Optimizing the DRASTIC vulnerability approach to overcome the subjectivity: a case study from Shabestar plain Iran. Arab J Geosci 12(16):527. https://doi.org/10.1007/s12517-019-4647-y

    Article  Google Scholar 

  30. Kazakis N, Voudouris KS (2015) Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters. J Hydrol 525:13–25. https://doi.org/10.1016/j.jhydrol.2015.03.035

    Article  Google Scholar 

  31. Khosravi K, Sartaj M, Tsai FTC, Singh VP, Kazakis N, Melesse AM, Prakash I, Bui DT, Pham BT (2018) A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci Total Environ 642:1032–1049. https://doi.org/10.1016/j.scitotenv.2018.06.130

    Article  Google Scholar 

  32. Ki MG, Koh DC, Yoon H, Kim H (2015) Temporal variability of nitrate concentration in groundwater affected by intensive agricultural activities in a rural area of Hongseong South Korea. Environ Earth Sci 74(7):6147–6161. https://doi.org/10.1007/s12665-015-4637-7

    Article  Google Scholar 

  33. Kihumba AM, Vanclooster M, Ndembo Longo J (2017) Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model. J Afr Earth Sci 126:13–22. https://doi.org/10.1016/j.jafrearsci.2016.11.025

    Article  Google Scholar 

  34. Kim YJ, Hamm SY (1999) Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area South Korea. Hydrogeol J 7(2):227–235. https://doi.org/10.1007/s100400050195

    Article  Google Scholar 

  35. Kouchou A, El Ghachtouli N, Duplay J, Ghazi M, Elsass F, Thoisy JC, Bellarbi M, Ijjaali M, Rais N (2020) Evaluation of the environmental and human health risk related to metallic contamination in agricultural soils in the Mediterranean semi-arid area (Saiss plain Morocco). Environ Earth Sci. https://doi.org/10.1007/s12665-020-8880-1

    Article  Google Scholar 

  36. Kumar A, Pramod Krishna A (2018) Groundwater vulnerability and contamination risk assessment using GIS-based modified DRASTIC-LU model in hard rock aquifer system in India. Geocarto Int 35(11):1–66. https://doi.org/10.1080/10106049.2018.1557259

    Article  Google Scholar 

  37. Kumar P, Bansod BKS, Debnath SK, Thakur PK, Ghanshyam C (2015) Index-based groundwater vulnerability mapping models using hydrogeological settings: a critical evaluation. Environ Impact Assess Rev 51:38–49. https://doi.org/10.1016/j.eiar.2015.02.001

    Article  Google Scholar 

  38. Laftouhi NE, Vanclooster M, Jalal M, Witam O, Aboufirassi M, Bahir M, Persoons E (2003) Groundwater nitrate pollution in the Essaouira Basin (Morocco). C R Geosci 335(3):307–317. https://doi.org/10.1016/s1631-0713(03)00025-7

    Article  Google Scholar 

  39. Lahjouj A, El Hmaidi A, Bouhafa K (2020a) Spatial and statistical assessment of nitrate contamination in groundwater: Case of Sais Basin Morocco. J Groundw Sci Eng 8(2):143–157. https://doi.org/10.19637/j.cnki.2305-7068.2020.02.006

    Article  Google Scholar 

  40. Lahjouj A, El Hmaidi A, Bouhafa K, Boufala M (2020b) Mapping specific groundwater vulnerability to nitrate using random forest: case of Sais basin Morocco. Model Earth Syst Environ 6:1451–1466. https://doi.org/10.1007/s40808-020-00761-6

    Article  Google Scholar 

  41. Lasagna M, De Luca DA, Franchino E (2018) Intrinsic groundwater vulnerability assessment: issues, comparison of different methodologies and correlation with nitrate concentrations in NW Italy. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7452-0

    Article  Google Scholar 

  42. Le TN, Tran DX, Tran TV, Gyeltshen S, Lam TV, Luu TH, Nguyen DQ, Dao TV (2021) Estimating soil water susceptibility to salinization in the mekong river delta using a modified DRASTIC model. Water 13(12):1636. https://doi.org/10.3390/w13121636

    Article  Google Scholar 

  43. Leal JAR, Castillo RR (2003) Aquifer vulnerability mapping in the Turbio river valley, Mexico: a validation study. Geofís Int 42(1):141–156

    Google Scholar 

  44. Li Q, Zhang H, Guo S, Fu K, Liao L, Xu Y, Cheng S (2019) Groundwater pollution source apportionment using principal component analysis in a multiple land-use area in southwestern China. Environ Sci Pollut Res 27:9000–9011. https://doi.org/10.1007/s11356-019-06126-6

    Article  Google Scholar 

  45. Liang J, Li Z, Yang Q, Lei X, Kang A, Li S (2019) Specific vulnerability assessment of nitrate in shallow groundwater with an improved DRSTIC-LE model. Ecotoxicol Environ Saf 174:649–657. https://doi.org/10.1016/j.ecoenv.2019.03.024

    Article  Google Scholar 

  46. Malki M, Bouchaou L, Hirich A, Ait Brahim Y, Choukr-Allah R (2017) Impact of agricultural practices on groundwater quality in intensive irrigated area of Chtouka-Massa, Morocco. Sci Total Environ 574:760–770. https://doi.org/10.1016/j.scitotenv.2016.09.1457

    Article  Google Scholar 

  47. Marei A, Khayat S, Weise S, Ghannam S, Sbaih M, Geyer S (2010) Estimating groundwater recharge using the chloride mass-balance method in the West Bank Palestine. Hydrol Sci J 55(5):780–791. https://doi.org/10.1080/02626667.2010.491987

    Article  Google Scholar 

  48. Margat J (1968) Groundwater vulnerability to contamination. BRGM, Orleans

    Google Scholar 

  49. Mei Y, Yuhong F, Yiwen J, Huaqi L (2011) Human health risk assessment model of organic pollution in groundwater: Shijiazhuang Industrial Zone. Acta Geol Sin 85(6):1508–1517. https://doi.org/10.1111/j.1755-6724.2011.00602.x

    Article  Google Scholar 

  50. Miche H, Saracco G, Mayer A, Qarqori K, Rouai M, Dekayir A, Chalikakis K, Emblanch C (2017) Hydrochemical constraints between the karst Tabular Middle Atlas Causses and the Saïs basin (Morocco): implications of groundwater circulation. Hydrogeol J 26(1):71–87. https://doi.org/10.1007/s10040-017-1675-0

    Article  Google Scholar 

  51. Mukate SV, Panaskar DB, Wagh VM, Baker SJ (2019) Understanding the influence of industrial and agricultural land uses on groundwater quality in semiarid region of Solapur. India Environ Dev Sustain 22:3207–3238. https://doi.org/10.1007/s10668-019-00342-3

    Article  Google Scholar 

  52. Nazzal Y, Howari FM, Iqbal J, Ahmed I, Orm NB, Yousef A (2019) Investigating aquifer vulnerability and pollution risk employing modified DRASTIC model and GIS techniques in Liwa area, United Arab Emirates. Groundw Sustain Dev 8:567–578. https://doi.org/10.1016/j.gsd.2019.02.006

    Article  Google Scholar 

  53. Neshat A, Pradhan B (2017) Evaluation of groundwater vulnerability to pollution using DRASTIC framework and GIS. Arab J Geosci 10(22):501. https://doi.org/10.1007/s12517-017-3292-6

    Article  Google Scholar 

  54. Noori R, Ghahremanzadeh H, Kløve B, Adamowski JF, Baghvand A (2018) Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J Environ Sci Health A 54(1):89–100. https://doi.org/10.1080/10934529.2018.1537728

    Article  Google Scholar 

  55. Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh India. Appl Geogr 28(1):32–53. https://doi.org/10.1016/j.apgeog.2007.07.008

    Article  Google Scholar 

  56. Re V, Sacchi E, Mas-Pla J, Menció A, El Amrani N (2014) Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco). Sci Total Environ 500–501:211–223. https://doi.org/10.1016/j.scitotenv.2014.08.115

    Article  Google Scholar 

  57. Sadkaoui N, Boukrim S, Bourak A, Lakhili F, Mesrar L, Chaouni AA, Lahrach A, Jabrane R, Akdim B (2013) Groundwater pollution of Sais Basin (Morocco), vulnerability mapping by drastic, GOD and PRK methods, involving geographic information system (GIS). Present Environ Sustain Dev 7(1):296–308

    Google Scholar 

  58. Selvam S, Antony Ravindran A, Venkatramanan S, Singaraja C (2015) Assessment of heavy metal and bacterial pollution in coastal aquifers from SIPCOT industrial zones, Gulf of Mannar, South Coast of Tamil Nadu India. Appl Water Sci 7(2):897–913. https://doi.org/10.1007/s13201-015-0301-3

    Article  Google Scholar 

  59. Sener E, Sener S, Davraz A (2009) Assessment of aquifer vulnerability based on GIS and DRASTIC methods: a case study of the Senirkent-Uluborlu Basin (Isparta, Turkey). Hydrogeol J 17(8):2023–2035. https://doi.org/10.1007/s10040-009-0497-0

    Article  Google Scholar 

  60. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  61. Shiklomanov IA (1998) World water resources : a new appraisal and assessment for the 21st century : a summary of the monograph world water resources. UNESCO International Hydrological Programme, UNESCO-IHP

  62. Sidibe AM, Xueyu L (2018) Heavy metals and nitrate to validate groundwater sensibility assessment based on DRASTIC models and GIS: Case of the upper Niger and the Bani basin in Mali. J Afr Earth Sci 147:199–210. https://doi.org/10.1016/j.jafrearsci.2018.06.019

    Article  Google Scholar 

  63. Sinha MK, Verma MK, Ahmad I, Baier K, Jha R, Azzam R (2016) Assessment of groundwater vulnerability using modified DRASTIC model in Kharun Basin, Chhattisgarh India. Arab J Geosci 9(2):98. https://doi.org/10.1007/s12517-015-2180-1

    Article  Google Scholar 

  64. Stigter TY, Ribeiro L, Dill AMMC (2005) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14(1–2):79–99. https://doi.org/10.1007/s10040-004-0396-3

    Article  Google Scholar 

  65. Su H, Kang W, Xu Y, Wang J (2017) Assessing groundwater quality and health risks of nitrogen pollution in the Shenfu mining area of Shaanxi Province Northwest China. Expos Health 10(2):77–97. https://doi.org/10.1007/s12403-017-0247-9

    Article  Google Scholar 

  66. Umar R, Ahmed I, Alam F (2009) Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of central Ganga plain, Western Uttar Pradesh. J Geol Soc India 73(2):193–201. https://doi.org/10.1007/s12594-009-0075-z

    Article  Google Scholar 

  67. Vrba J, Zaporozec A (1994) Guidebook on mapping groundwater vulnerability. Heise, Hannover

    Google Scholar 

  68. Wang B, Teng Y, Wang H, Zuo R, Zhai Y, Yue W, Yang J (2020) Entropy weight method coupled with an improved DRASTIC model to evaluate the special vulnerability of groundwater in Songnen Plain Northeastern China. Hydrol Res 51(5):1184–1200. https://doi.org/10.2166/nh.2020.056

    Article  Google Scholar 

  69. Wei A, Bi P, Guo J, Lu S, Li D (2021) Modified DRASTIC model for groundwater vulnerability to nitrate contamination in the Dagujia river basin China. Water Supply 21(4):1793–1805. https://doi.org/10.2166/ws.2021.018

    Article  Google Scholar 

  70. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometr Bull 6:80–83

    Article  Google Scholar 

  71. Yang J, Tang Z, Jiao T, Malik Muhammad A (2017) Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain China. Environ Earth Sci 76(12):426. https://doi.org/10.1007/s12665-017-6759-6

    Article  Google Scholar 

  72. Yeh HF, Cheng YS, Lin HI, Lee CH (2016) Mapping groundwater recharge potential zone using a GIS approach in Hualian River Taiwan. Sustain Environ Res 26(1):33–43. https://doi.org/10.1016/j.serj.2015.09.005

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdelhakim Lahjouj.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lahjouj, A., Hmaidi, A.E., Essahlaoui, A. et al. Groundwater Vulnerability Assessment Through a Modified DRASTI-LU Framework: Case Study of Saiss Basin in Morocco. Earth Syst Environ (2021). https://doi.org/10.1007/s41748-021-00269-8

Download citation

Keywords

  • Groundwater vulnerability
  • Nitrate
  • Modified DRASTI-LU
  • Saiss basin
  • Groundwater pollution