Skip to main content

Advertisement

Log in

Assessment of Land Degradation in Northern Oman Using Geospatial Techniques

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The northern coast of Oman (Al-Batinah plain), hosts the major population and irrigated agriculture of the country. Recently, it has experienced considerable land degradation, revealed by an inland shifting of cultivation. The main objective of this study was to assess the magnitude of land degradation in the past 2 decades (2001–2019) using the integration of remote sensing and geographical information system (GIS). The study relied on multi-temporal normalized difference vegetation index (NDVI), land surface temperature (LST), and surface albedo data linked with in situ groundwater salinity measurements. The degree of land degradation was determined by applying the geospatial weighted overlay analysis (WOA) combining both space-based and in situ data. Results showed that degraded lands account for almost 70% of the coastal zone, with 18.6% under severe degradation. Major degradation occurred at Barka and Shinas regions synchronized by significant groundwater salinization. Results of this study assert on the significance of geospatial modeling for mapping land degradation in arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AbdelRahman M, Metwaly M, Shalaby A (2019) Quantitative assessment of soil saline degradation using remote sensing indices in Siwa Oasis. Rem Sens Appl Soc Environ 13:53–60

    Google Scholar 

  • Ahmed I, Hussain N, Al-Rawahy S (2013) Management of saline lands in Oman: learning to live with salinity. In: Shahid SA et al (eds) Developments in soil salinity assessment and reclamation: innovative thinking and use of marginal soil and water resources in irrigated agriculture. Springer Science+Business Media, Dordrecht

    Google Scholar 

  • Almazroui M (2020) Summer maximum temperature over the gulf cooperation council states in the twenty-first century: multimodel simulations overview. Arab J Geosci 13:477

    Article  Google Scholar 

  • Almazroui M, Islam MN, Saeed S, Saeed F, Ismail M (2020) Future changes in climate over the Arabian Peninsula based on CMIP6 multimodel simulations. Earth Syst Environ 4:611–630

    Article  Google Scholar 

  • Anyamba A, Tucker C (2012) Historical perspectives on AVHRR NDVI and vegetation drought monitoring. In: Wardlow BD, Anderson MC, Verdin JP (eds) Remote sensing of drought: innovative Monitoring Approaches NASA Publications, CRC Press/Taylor & Francis

  • Apaydin H, Sonmez F, Yildirim Y (2004) Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim Change 28:31–40

    Google Scholar 

  • Barrow CJ (1992) World atlas of desertification (United nations environment programme). Land Degrad Dev 3(4):249–249

    Article  Google Scholar 

  • Bezerraa F, Aguiara A, Alvalab R, Giarollaa A, Bezerraa K, Limac P, Nascimentod F, Araie E (2020) Analysis of areas undergoing desertification, using EVI2 multi-temporal data based on MODIS imagery as indicator. Ecol Ind 117:106579

    Article  Google Scholar 

  • Charabi Y, Al-Yahyai S (2013) Projection of future changes in rainfall and temperature patterns in Oman. J Earth Sci Clim Change 4:154

    Article  Google Scholar 

  • Chen W, Sakai T, Moriya K, Koyama L, Cao C (2013) Estimation of vegetation coverage in semi-arid sandy land based on multivariate statistical modeling using remote sensing data. Environ Model Assess 18:547–558

    Article  Google Scholar 

  • Clark WAV, Hosking PL (1986) Statistical methods for geographer. John Wiley & Son, Chisterter, p 518

    Google Scholar 

  • Collins JB, Woodcock CE (1996) An assessment of several linear change detection techniques for mapping forest mortality using multi-temporal landsat TM data. Remote Sens Environ 56:66–77

    Article  Google Scholar 

  • Cui X, Gibbes C, Southworth J, Waylen P (2013) Using remote sensing to quantify vegetation change and ecological resilience in a semi-arid system. Land 2(2):108–130

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. WIREs Clim Change 2:45–65

    Article  Google Scholar 

  • Deng Y, Wang S, Bai X, Tian Y, Wu L, Xiao J, Chen F, Qian Q (2018) Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci Rep 8:641

    Article  Google Scholar 

  • Eckert S, Hüsler F, Liniger H, Hodel E (2015) Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J Arid Environ 113:16–28

    Article  Google Scholar 

  • El Kenawy AM, McCabe MF (2016) A multi-decadal assessment of the performance of gauge- and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends. Int J Climatol 36:656–674

    Article  Google Scholar 

  • El Kenawy A, Al Buloshi A, Al-Awadhi T, Al Nasiri N, Navarro-Serrano F, Alhatrushi S, Robaa SM, Domínguez-Castro F, McCabe MF, Petra-Manuela S, Lopez-Moreno L, Vicente-Serrano SM (2020) Evidence for intensification of meteorological droughts in Oman over the past four decades. Atmos Res 246:105126

    Article  Google Scholar 

  • Ghebrezgabher M, Yang T, Yang X, Sereke T (2020) Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt J Remote Sens Space Sci. https://doi.org/10.1016/j.ejrs.2020.08.003

    Article  Google Scholar 

  • Haselsteiner R (2011) Flood protection and groundwater recharge in the Batinah region in Oman. Interntaional Conference on Drought Management Strategies in Arid and Semi-Arid regions, Muscat, Oman, 11–14 Dec. 2011.

  • Hereher M (2014) The Lake Manzala of Egypt: an ambiguous future. Environ Earth Sci 72:1801–1809

    Article  Google Scholar 

  • Hereher M (2017) Effect of land use/cover change on land surface temperatures-The Nile Delta, Egypt. J Afr Earth Sci 126:75–83

    Article  Google Scholar 

  • Hereher M, Al-Buloshi A, Sherief Y, Al-Awadhi T, Al-Hatrushi S, Charabi Y (2020) Formation of the Wahiba Sand Sea in the Sultanate of Oman: implications of change in wind energy. Arab J Geosci 13(22):1–14

    Article  Google Scholar 

  • Hussain N, Al-Rawahy SA, Rabee J, Al-Amri M (2006) Causes, origin, genesis and extent of soil salinity in the Sultanate of Oman. Pak J Agric Sci 43(1–2):1–6

    Google Scholar 

  • ICBA (2012) Oman salinity strategy. International Center for Biosaline Agriculture, Dubai, United Arab Emirates

    Google Scholar 

  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt E (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92(4):475–482

    Article  Google Scholar 

  • Jafari R, Bakhshandehmehr L (2016) Quantitative mapping and assessment of environmentally sensitive areas to desertification in central Iran. Land Degrad Dev 27:108–119

    Article  Google Scholar 

  • Jensen R (2004) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice Hall, USA

    Google Scholar 

  • Jensen R (2015) Introductory digital image processing: a remote sensing perspective, 4th edn. Pearson, USA

    Google Scholar 

  • JICA (1990) The Study on A Master Plan for Agricultural Development, Final Report Vol. I and 2. Prepared by Japan International Cooperation Agency for the Sultanate of Oman.

  • Kamdar I, Ali A, Bennui A, Techato K (2019) Municipal solid waste landfill siting using an integrated GIS-AHP approach: a case study from Songkhla Thailand. Resour Conserv Recycl 149:220–235

    Article  Google Scholar 

  • Kapilan S, Elangovan K (2018) Potential landfill site selection for solid waste disposal using GIS and multi-criteria decision analysis (MCDA). J Cent South Univ 25:570–585

    Article  Google Scholar 

  • Köppen WP (1936) Das geographische system der klimate. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Kwarteng AY, Dorvlo ASS, Kumar GT (2009) Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int J Climatol 29:605–617

    Article  Google Scholar 

  • Lambin EF (1997) Modeling and monitoring land-cover change processes in tropical regions. Prog Phys Geog 21(3):375–393

    Article  Google Scholar 

  • Lamqadem A, Pradhan B, Saber H, Rahimi A (2018) Desertification sensitivity analysis using MEDALUS model and GIS: a case study of the oases of Middle Draa Valley. Morocco Sensors 18:2230

    Article  Google Scholar 

  • Li Z, Wang S, Song S, Wang Y, Musakwa W (2021) Detecting land degradation in Southern Africa using Time Series Segment and Residual Trend (TSS-RESTREND). J Arid Environ 184:104314

    Article  Google Scholar 

  • Loarie SR, Lobell DB, Asner G, Mu Q, Field C (2011) Direct impacts on local climate of sugar-cane expansion in Brazil. Nat Clim Chang 1(2):105–109

    Article  Google Scholar 

  • Lu D, Mausel P, Brondizio E, Moran E (2004) Change detection techniques. Int J Remote Sen 25(12):2365–2404

    Article  Google Scholar 

  • MAF (1993) South Batinah integrated study. Directorate General of Agricultural Research Ministry of Agriculture and Fisheries, Muscat, Oman

    Google Scholar 

  • MAF (2010) Agriculture statistics. Ministry of Agriculture and Fisheries, Muscat Sultanate of Oman

    Google Scholar 

  • Masoudi M, Jokar P, Pradham B (2018) A New Approach for land degradation and desertification assessment using geospatial techniques. Nat Hazards Earth Syst Sci Discuss 18:1–9

    Google Scholar 

  • McDonnell, R. (2016) Groundwater use and policies in Oman. International Water Management Institute (IMWI) Project No. 14: Groundwater Governance in the Arab World, 68

  • MRMEWR (2005) National Action Programme to Combat Desertification in the Sultanate of Oman. Ministry of Regional Planning, Environment and Water Resources, Muscat, Sultanate of Oman

    Google Scholar 

  • NASA (2009) Landsat 7 Science Data Users’ Handbook

  • The National Center for Statistics and Information (NCSI) (2009) The Statistical Year Book, Muscat, Oman. www.ncsi.gov.om. Accessed 30 Sept 2020

  • The National Center for Statistics and Information (NCSI) (2018) The Statistical Year Book, Muscat, Oman. www.ncsi.gov.om. Accessed 30 Sept 2020

  • Ozelkan E, Bagis S, Ozelkan E, Ustundag B, Yucel M, Ormeci C (2015) Spatial interpolation of climatic variables using land surface temperature and modified inverse distance weighting. Int J Rem Sen 36(4):1000–1025

    Article  Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely sensed data. Int J Rem Sen 10:989–1003

    Article  Google Scholar 

  • Sobrino JA, Franch B, Oltra-Carrio R, Vermote EF, Fedele E (2013) Evaluation of the MODIS albedo product over a heterogeneous agricultural area. Int J Remote Sens 34(15):5530–5540

    Article  Google Scholar 

  • Tomasella J, Silva PV, Barbosa RM, Rodriguez AA, de Oliveira DA, Sestini F (2018) Desertification trends in the Northeast of Brazil over the period 2000–2016. Int J Appl Earth Obs Geoinf 73:197–206

    Google Scholar 

  • Tucker C (1979) Red and photographic infrared linear combination for monitoring green vegetation. Rem Sens Environ 8:127–150

    Article  Google Scholar 

  • United Nations (2011) Global drylands: A UN system-wide responses. United Nations Environment Management Group, UN

    Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li Z (2002) Validation of the land-surface temperature products retrieved from terra moderate resolution imaging spectroradiometer data. Rem Sens Environ 83(1–2):163–180

    Article  Google Scholar 

  • Wan Z, Hook S, Hulley G (2015) MYD11A2 MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MYD11A2.006

  • Wang J, Wei H, Cheng K, Ochir A, Davaasuren D, Li P, Chan F, Nasanbat E (2020) Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia. Environ Dev 34:100497

    Article  Google Scholar 

  • Wilks DS (2011) Statistical methods in the atmospheric sciences. Elsevier Academic Press, Amsterdam, Boston (ISBN: 9780123850225 0123850223)

    Google Scholar 

  • Yao Y, Qin Q, Ghulam A, Zhu L, Yang N (2008) Relating surface albedo and vegetation index with surface dryness using Landsat ETM+ imagery. Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2008, July 8–11, 2008, Boston, Massachusetts, USA,

  • Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Int J Rem Sen Environ 106:375–386

    Article  Google Scholar 

Download references

Acknowledgements

The authors deeply acknowledge the help of the Ministry of Regional Municipalities and Water Resources for providing the groundwater data of the study area. We also thank the Land Processes Distributed Active Archive Center of NASA (LP DAAC) and the United States Geological Survey Earth Explorer Gateway for providing remotely sensed data. We also acknowledge the continuous support from the Geography Department, Sultan Qaboos University, Oman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hereher.

Ethics declarations

Conflict of Interest

The author declares that no conflict of interest exists with any person or organization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hereher, M., El-Kenawy, A. Assessment of Land Degradation in Northern Oman Using Geospatial Techniques. Earth Syst Environ 6, 469–482 (2022). https://doi.org/10.1007/s41748-021-00216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-021-00216-7

Keywords

Navigation