Skip to main content
Log in

Identifying Agricultural Systems Using SVM Classification Approach Based on Phenological Metrics in a Semi-arid Region of Morocco

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

To understand changes in agricultural systems, it is necessary to monitor vegetation dynamics based on the spatio-temporal characterization of phenological parameters. The purpose of this study is to identify the main agricultural systems using a phenology-based classification method in a semi-arid context. Phenological metrics were derived from Normalized Difference Vegetation Index time series extracted from MOD13Q1 product between 2012 and 2016. Furthermore, Support Vector Machine classification method was applied based on phenological metrics, to identify the main agricultural system classes in the study area. The main classes are; (1) irrigated annual crop, (2) irrigated perennial crop, (3) rainfed area and (4) fallow. The classification overall accuracy reached 88%, with a kappa coefficient of 0.83 and values of F1-score greater than 0.76. The results demonstrated the ability of phenological parameters to identify and monitor the main agricultural system classes in the study area and to control the illegal pumping zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Adapted from Jönsson and Eklundh (2004)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcantara C, Kuemmerle T, Prishchepov AV, Radeloff VC (2012) Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens Environ 124:334–347. https://doi.org/10.1016/j.rse.2012.05.019

    Article  Google Scholar 

  • Almazroui M, Islam MN, Balkhair KS, Şen Z, Masood A (2017a) Rainwater harvesting possibility under climate change: a basin-scale case study over western province of Saudi Arabia. Atmos Res 189:11–23. https://doi.org/10.1016/j.atmosres.2017.01.004

    Article  Google Scholar 

  • Almazroui M, Nazrul Islam M, Saeed S, Alkhalaf AK, Dambul R (2017b) Assessment of Uncertainties in projected temperature and precipitation over the Arabian Peninsula using three categories of Cmip5 multimodel ensembles. Earth Syst Environ 1:23. https://doi.org/10.1007/s41748-017-0027-5

    Article  Google Scholar 

  • Arvor D, Jonathan M, Meirelles M, Dubreuil V, Durieux L (2011) Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso. Brazil Int J Remote Sens 32:7847–7871. https://doi.org/10.1080/01431161.2010.531783

    Article  Google Scholar 

  • Bachoo A, Archibald S (2007) Influence of using date-specific values when extracting phenological metrics from 8-day composite NDVI data. In: 2007 international workshop on the analysis of multi-temporal remote sensing images, 18–20 July 2007, pp 1–4. https://doi.org/10.1109/multitemp.2007.4293044

  • Barakat A, Ouargaf Z, Khellouk R, El Jazouli A, Touhami F (2019) Land use/land cover change and environmental impact assessment in Béni-Mellal District (Morocco) using remote sensing and GIS. Earth Syst Environ 3:113–125. https://doi.org/10.1007/s41748-019-00088-y

    Article  Google Scholar 

  • Benabdelouahab T, Balaghi R, Hadria R, Lionboui H, Minet J, Tychon B (2015) Monitoring surface water content using visible and short-wave infrared SPOT-5 data of wheat plots in irrigated semi-arid regions. Int J Remote Sens 36:4018–4036. https://doi.org/10.1080/01431161.2015.1072650

    Article  Google Scholar 

  • Benabdelouahab T, Balaghi R, Hadria R, Lionboui H, Djaby B, Tychon B (2016) Testing aquacrop to simulate durum wheat yield and schedule irrigation in a semi-arid irrigated perimeter in Morocco. Irrig Drain 65:631–643. https://doi.org/10.1002/ird.1977

    Article  Google Scholar 

  • Biggs TW, Thenkabail PS, Gumma MK, Scott CA, Parthasaradhi GR, Turral HN (2006) Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. Int J Remote Sens 27:4245–4266. https://doi.org/10.1080/01431160600851801

    Article  Google Scholar 

  • Boschetti M, Stroppiana D, Brivio PA, Bocchi S (2009) Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int J Remote Sens 30:4643–4662. https://doi.org/10.1080/01431160802632249

    Article  Google Scholar 

  • Chen J, Jönsson P, Tamura M, Gu Z, Matsushita B, Eklundh L (2004) A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens Environ 91:332–344. https://doi.org/10.1016/j.rse.2004.03.014

    Article  Google Scholar 

  • Chen JL, Wilson CR, Seo KW (2006) Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J Geophys Res Solid Earth 1:1. https://doi.org/10.1029/2005jb004064

    Google Scholar 

  • CRI (2015) Centre Régional d’Investissement-Béni Mellal khénifra, Monographie de la région de Béni Mellal-Khénifra, Octobre 2015

  • DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob Biogeochem Cycles 13:803–815. https://doi.org/10.1029/1999GB900037

    Article  Google Scholar 

  • Didan K (2015) MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/modis/mod13q1.006

  • Diouf AA, Djaby B, Diop MB, Wele A, Ndione JA, Tychon B (2014) Fonction d’ajustement pour l’estimation de la production fourragère herbacée des parcours naturels du Sénégal à partir du NDVI S10 de SPOT-VEGETATION. In: XXVIIe Colloque de l’Association Internationale de Climatologie, Dijon, France

  • Diouf AA, Faye G, Minet J, Djaby B, Ndione JA, Tychon B (2015) Zonage phénoclimatique et caractérisation des parcours naturels du sénégal avec les données de télédétection satellitaire. In: XXVIIIe Colloque de l’Association Internationale de Climatologie, Liège, Bélgique

  • Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263(5144):185–190

    Article  Google Scholar 

  • Eklundh L, Jönsson P (2015) Timesat 3.2 software manual. Lund and Malmö University, Sweden

  • Evrendilek F, Gulbeyaz O (2011) Boosted decision tree classifications of land cover over Turkey integrating MODIS, climate and topographic data. Int J Remote Sens 32:3461–3483. https://doi.org/10.1080/01431161003749469

    Article  Google Scholar 

  • Geng L, Ma M, Wang X, Yu W, Jia S, Wang H (2014) Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI Data Sets in the Heihe River Basin. China Remote Sens 6:2024

    Article  Google Scholar 

  • Hadria R et al (2006) Monitoring of irrigated wheat in a semi-arid climate using crop modelling and remote sensing data: impact of satellite revisit time frequency. Int J Remote Sens 27:1093–1117. https://doi.org/10.1080/01431160500382980

    Article  Google Scholar 

  • Hadria R, Khabba S, Lahrouni A, Duchemin B, Chehbouni A, Carriou J, Ouzine L (2007) Calibration and validation of the STICS crop model for managing wheat irrigation in the semi-arid Marrakech/Al Haouz Plain. Arab J Sci Eng 32:87–101

    Google Scholar 

  • Hadria R, Benabdelouahab T, Mahyou H, Balaghi R, Bydekerke L, El Hairech T, Ceccato P (2018) Relationships between the three components of air temperature and remotely sensed land surface temperature of agricultural areas in Morocco. Int J Remote Sens 39:356–373. https://doi.org/10.1080/01431161.2017.1385108

    Article  Google Scholar 

  • Jed Wing MKC et al (2018) Caret: classification and regression training

  • Ji L, Peters AJ (2007) Performance evaluation of spectral vegetation indices using a statistical sensitivity function. Remote Sens Environ 106:59–65. https://doi.org/10.1016/j.rse.2006.07.010

    Article  Google Scholar 

  • Jönsson P, Eklundh L (2002) Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans Geosci Remote Sens 40:1824–1832

    Article  Google Scholar 

  • Jönsson P, Eklundh L (2004) TIMESAT a program for analyzing time-series of satellite sensor data. Comput Geosci 30:833–845. https://doi.org/10.1016/j.cageo.2004.05.006

    Article  Google Scholar 

  • Jung M, Henkel K, Herold M, Churkina G (2006) Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens Environ 101:534–553. https://doi.org/10.1016/j.rse.2006.01.020

    Article  Google Scholar 

  • Kaptué A, Roujean J-L, De Jong SM (2011) Comparison and relative quality assessment of the GLC2000, GLOBCOVER, MODIS and ECOCLIMAP land cover data sets at the African continental scale. Int J Appl Earth Obs Geoinf 13:207–219. https://doi.org/10.1016/j.jag.2010.11.005

    Article  Google Scholar 

  • Lambin EF, Turner BL, Helmut JG et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–269

    Article  Google Scholar 

  • Lessel J, Ceccato P (2016) Creating a basic customizable framework for crop detection using Landsat imagery. Int J Remote Sens 37:6097–6107. https://doi.org/10.1080/2150704X.2016.1252471

    Article  Google Scholar 

  • Lieth H (1974) Phenology and seasonality modeling, vol 8. Springer, New York

    Book  Google Scholar 

  • Lionboui H, Fadlaoui A, Elame F, Benabdelouahab T (2014) Water pricing impact on the economic valuation of water resources. Int J Educ Res 2:147

    Google Scholar 

  • Lionboui H, Benabdelouahab T, Elame F, Hasib A, Boulli A (2016) Multi-year agro-economic modelling for predicting changes in irrigation water management indicators in the Tadla sub-basin. Int J Agric Manag 5:96–105. https://doi.org/10.5836/ijam/2016-05-96

    Google Scholar 

  • Löw F, Michel U, Dech S, Conrad C (2013) Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS J Photogramm Remote Sens 85:102–119. https://doi.org/10.1016/j.isprsjprs.2013.08.007

    Article  Google Scholar 

  • Marchane A et al (2015) Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens Environ 160:72–86. https://doi.org/10.1016/j.rse.2015.01.002

    Article  Google Scholar 

  • Matsushita B, Yang W, Chen J, Onda Y, Qiu G (2007) Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors (Basel, Switzerland) 7:2636–2651

    Article  Google Scholar 

  • McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32:12–16. https://doi.org/10.1080/00031305.1978.10479236

    Google Scholar 

  • McVicar TR, Jupp DLB (1998) The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: a review. Agric Syst 57:399–468. https://doi.org/10.1016/S0308-521X(98)00026-2

    Article  Google Scholar 

  • Mottaleb KA, Gumma MK, Mishra AK, Mohanty S (2015) Quantifying production losses due to drought and submergence of rainfed rice at the household level using remotely sensed MODIS data. Agric Syst 137:227–235. https://doi.org/10.1016/j.agsy.2014.08.014

    Article  Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogram Remote Sens 66:247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

    Article  Google Scholar 

  • NASA LP DAAC 2017, MOD13Q1. Version 6. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota (https://lpdaac.usgs.gov). Accessed 13 Apr 2017. http://dx.doi.org/10.5067/MODIS/MOD13Q1.006

  • Ouatiki H et al (2017) Evaluation of TRMM 3B42 V7 rainfall product over the Oum Er Rbia watershed in Morocco. Climate 5:1

    Article  Google Scholar 

  • Ouatiki H, Boudhar A, Ouhinou A, Arioua A, Hssaisoune M, Bouamri H, Benabdelouahab T (2019) Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab J Geosci 12:128. https://doi.org/10.1007/s12517-019-4300-9

    Article  Google Scholar 

  • Pal M, Mather PM (2005) Support vector machines for classification in remote sensing. Int J Remote Sens 26:1007–1011. https://doi.org/10.1080/01431160512331314083

    Article  Google Scholar 

  • Peng J, Dan L, Dong W (2009) Estimate of extended long-term LAI data set derived from AVHRR and MODIS based on the correlations between LAI and key variables of the climate system from 1982 to 2009. Int J Remote Sens 34:7761–7778. https://doi.org/10.1080/01431161.2013.826840

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing

  • Reed BC, Brown Jesslyn F, VanderZee D, Loveland TR, Merchant JW, Ohlen DO (1994) Measuring phenological variability from satellite imagery. J Veg Sci 5:703–714

    Article  Google Scholar 

  • René A, Nathalie R (2007) L’agriculture du Maghreb au défi du changement climatique: Quelles stratégies d’adaptation face à la raréfaction des ressources hydriques? Paper presented at the WATMED 3,3e conférence internationale sur les Ressources en Eau dans le Bassin Méditerranéen <halshs-00134115>, Tripoli 1–3 novembre 2006

  • Schmidt M, Lucas R, Bunting P, Verbesselt J, Armston J (2015) Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland. Aust Remote Sens Environ 158:156–168. https://doi.org/10.1016/j.rse.2014.11.015

    Article  Google Scholar 

  • Schwartz MD (2003) Phenology: an integrative environmental science. Tasks for vegetation science, vol 39. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Shahriar PM, Budde M, Rowland J (2014) Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sens Environ 149:155–165. https://doi.org/10.1016/j.rse.2014.04.008

    Article  Google Scholar 

  • Shao Y, Lunetta RS (2012) Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J Photogram Remote Sens 70:78–87. https://doi.org/10.1016/j.isprsjprs.2012.04.001

    Article  Google Scholar 

  • Sun H, Xu A, Lin H, Zhang L, Mei Y (2012) Winter wheat mapping using temporal signatures of MODIS vegetation index data. Int J Remote Sens 33:5026–5042. https://doi.org/10.1080/01431161.2012.657366

    Article  Google Scholar 

  • Tucker CJ, Vanpraet C, Boerwinkel E, Gaston A (1983) Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sens Environ 13:461–474

    Article  Google Scholar 

  • Vapnik VN (2006) Estimation of dependence based on empirical data: empirical inference science afterword of 2006. Information science and statistics. Springer, New York. https://doi.org/10.1007/0-387-34239-7

    Google Scholar 

  • Viña A, Gitelson AA, Rundquist DC, Keydan G, Leavitt B, Schepers J (2004) Monitoring maize (Zea mays L.) phenology with remote sensing. Agron J 96:1139–1147. https://doi.org/10.2134/agronj2004.1139

    Article  Google Scholar 

  • Vrieling A, de Beurs KM, Brown ME (2011) Variability of African farming systems from phenological analysis of NDVI time series. Clim Change 109:455–477. https://doi.org/10.1007/s10584-011-0049-1

    Article  Google Scholar 

  • Wardlow B, Egbert S, Kastens J (2007) Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens Environ 108:290–310. https://doi.org/10.1016/j.rse.2006.11.021

    Article  Google Scholar 

  • Winkler K, Gessner U, Hochschild V (2017) Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: rainfall anomalies and vegetation condition in the context of ENSO. Remote Sens 9:831

    Article  Google Scholar 

  • Wu D, Qu JJ, Hao X (2015) Agricultural drought monitoring using MODIS-based drought indices over the USA Corn Belt. Int J Remote Sens 36:5403–5425. https://doi.org/10.1080/01431161.2015.1093190

    Article  Google Scholar 

  • Zhao Q, Brocks S, Lenz-Wiedemann VIS, Miao Y, Zhang F, Bareth G (2017) Detecting spatial variability of paddy rice yield by combining the DNDC model with high resolution satellite images. Agric Syst 152:47–57. https://doi.org/10.1016/j.agsy.2016.11.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to NASA’s team, for creating and making the vegetation index product MOD13Q1 freely available. We also would like to thank Pr. Eklundh and his team for their available help on TIMESAT software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lebrini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebrini, Y., Boudhar, A., Hadria, R. et al. Identifying Agricultural Systems Using SVM Classification Approach Based on Phenological Metrics in a Semi-arid Region of Morocco. Earth Syst Environ 3, 277–288 (2019). https://doi.org/10.1007/s41748-019-00106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-019-00106-z

Keywords

Navigation