Skip to main content

Advertisement

Log in

A Review of Off-World in Bioregenerative Food Systems

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The history of agriculture on Earth has spanned thousands of years marked by great innovations needed to meet the challenges of the day. The space environment presents new challenges for growing plants from partial gravity to recycling plant and human waste in a closed environment. Regolith plays an important role in research for developing agricultural systems on planetary surfaces such as the moon and Mars. This work reviews the history of growing plants in space and regolith-based agriculture including the challenges faced and the solutions attempted. Though many solutions have been developed, significant knowledge gaps remain which provide great opportunities for the future of off-world agricultural research and great returns for creating more sustainable practices for terrestrial agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analysed in this study.

References

  1. Brevik E (2005) A brief history of soil science. p http://www.eolss.net

  2. Gaffney J, Bing J, Byrne PF et al (2019) Science-based intensive agriculture: sustainability, food security, and the role of technology. Global Food Sec 23:236–244. https://doi.org/10.1016/j.gfs.2019.08.003

    Article  Google Scholar 

  3. Davies FT, He C, Lacey RE, Ngo Q (2003) Growing Plants for NASA—Challenges in Lunar and Martian Agriculture. In: Combined Proceedings International Plant Propagators’ Society. pp 59–64

  4. Perchonok MH, Cooper MR, Catauro PM (2012) Mission to mars: food production and processing for the final frontier. Annu Rev Food Sci Technol 3:311–330. https://doi.org/10.1146/annurev-food-022811-101222

    Article  CAS  Google Scholar 

  5. Eichler A, Hadland N, Pickett D et al (2021) Challenging the agricultural viability of Martian regolith simulants. Icarus 354:114022. https://doi.org/10.1016/j.icarus.2020.114022

    Article  Google Scholar 

  6. Yamashita M, Hashimoto H, Wada H (2009) On-site resources availability for space agriculture on mars. Mars Prospect Energy Mater Res. https://doi.org/10.1007/978-3-642-03629-3_18

    Article  Google Scholar 

  7. Richter DD, Eppes MC, Austin JC et al (2020) Soil production and the soil geomorphology legacy of Grove Karl Gilbert. Soil Sci Soc Am J 84:1–20. https://doi.org/10.1002/saj2.20030

    Article  CAS  Google Scholar 

  8. Chevrier V, Mathé PE (2007) Mineralogy and evolution of the surface of Mars: a review. Planet Space Sci 55:289–314. https://doi.org/10.1016/j.pss.2006.05.039

    Article  CAS  Google Scholar 

  9. Fackrell LE, Schroeder PA, Thompson A et al (2021) Development of Martian regolith and bedrock simulants: potential and limitations of Martian regolith as an in-situ resource. Icarus 354:114055. https://doi.org/10.1016/j.icarus.2020.114055

    Article  CAS  Google Scholar 

  10. Porterfield DM, Neichitailo GS, Mashinski AL, Musgrave ME (2003) Spaceflight hardware for conducting plant growth experiments in space: the early years 1960–2000. Adv Space Res 31:183–193. https://doi.org/10.1016/S0273-1177(02)00752-4

    Article  CAS  Google Scholar 

  11. Zabel P, Bamsey M, Schubert D, Tajmar M (2016) Review and analysis of over 40 years of space plant growth systems. Life Sci Space Res 10:1–16. https://doi.org/10.1016/j.lssr.2016.06.004

    Article  CAS  Google Scholar 

  12. Haeuplik-Meusburger S, Paterson C, Schubert D, Zabel P (2014) Greenhouses and their humanizing synergies. Acta Astronaut 96:138–150. https://doi.org/10.1016/j.actaastro.2013.11.031

    Article  Google Scholar 

  13. Harvey B, Zakutnyaya O (2011) Russian space probes: Scientific discoveries and future missions. Springer Sci Business Med. https://doi.org/10.1007/978-1-4419-8150-9

    Article  Google Scholar 

  14. Link BM, Durst SJ, Zhou W, Stankovic B (2003) Seed-to-seed growth of Arabidopsis Thaliana on the international space station. Adv Space Res 31:2237–2243. https://doi.org/10.1016/S0273-1177(03)00250-3

    Article  CAS  Google Scholar 

  15. Solheim BGB (2009) 3D information from 2D images recorded in the European modular cultivation system on the ISS. Adv Space Res 44:1382–1391. https://doi.org/10.1016/j.asr.2009.07.008

    Article  CAS  Google Scholar 

  16. Stutte G, Wheeler R, Morrow R, Newsham G (2011) Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System. In: 41st International Conference on Environmental Systems. p 5263

  17. Monje O, Richards JT, Carver JA et al (2020) Hardware validation of the advanced plant habitat on ISS: canopy photosynthesis in reduced gravity. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00673

    Article  Google Scholar 

  18. Johnson CM, Boles HO, Spencer LE et al (2021) Supplemental food production with plants: a review of NASA research. Front Astron Space Sci. https://doi.org/10.3389/fspas.2021.734343

    Article  Google Scholar 

  19. Silverstone SE, Nelson M (1996) Food production and nutrition in Biosphere 2: results from the first mission September 1991 to September 1993. Adv Space Res 18:49–61

    Article  CAS  Google Scholar 

  20. He W, Liu H, Xing Y, Jones SB (2010) Comparison of three soil-like substrate production techniques for a bioregenerative life support system. Adv Space Res 46:1156–1161. https://doi.org/10.1016/j.asr.2010.05.027

    Article  CAS  Google Scholar 

  21. Kang W, He W, Li L, Liu H (2012) Characteristics of the soil-like substrates produced with a novel technique combining aerobic fermentation and earthworm treatment. Adv Space Res 50:1495–1500. https://doi.org/10.1016/j.asr.2012.06.038

    Article  CAS  Google Scholar 

  22. Hu D, Li L, Liu H et al (2014) Design and control of rotating soil-like substrate plant-growing facility based on plant water requirement and computational fluid dynamics simulation. Ecol Eng 64:269–275. https://doi.org/10.1016/j.ecoleng.2013.12.048

    Article  Google Scholar 

  23. Shao L, Fu Y, Fu W et al (2014) Effects of aqueous extract of soil-like substrate made from three different materials on seed germination and seedling growth of rice. Acta Astronaut 96:83–88. https://doi.org/10.1016/j.actaastro.2013.10.007

    Article  CAS  Google Scholar 

  24. Wheeler RM (2004) Horticulture for mars. Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 201–215

    Google Scholar 

  25. Schwartzkopf SH (1997) Human life support for advanced space exploration. Adv Space Biol Med 6:231–253

    Article  CAS  Google Scholar 

  26. Berkovich YA, Chetirkin PV, Wheeler RM, Sager JC (2004) Evaluating and optimizing horticultural regimes in space plant growth facilities. Adv Space Res 34:1612–1618

    Article  CAS  Google Scholar 

  27. Anderson MS, Ewert MK, Keener JF, Wagner SA (2018) Life Support Baseline Values and Assumptions Document

  28. Maggi F, Pallud C (2010) Space agriculture in micro- and hypo-gravity: A comparative study of soil hydraulics and biogeochemistry in a cropping unit on Earth, Mars, the Moon and the space station. Planet Space Sci 58:1996–2007. https://doi.org/10.1016/j.pss.2010.09.025

    Article  CAS  Google Scholar 

  29. Burke P, Varnum-Lowry D Microgravity, Partial Gravity Fluid Physics: Bubble Formation and Movement in Variable Gravity Environments. In: Poster presented at: The International Space Station (ISS) Research and Development conference (ISSR&D 2019)

  30. Medina FJ, Manzano A, Villacampa A et al (2021) Understanding reduced gravity effects on early plant development before attempting life-support farming in the moon and mars. Front Astron Space Sci. https://doi.org/10.3389/fspas.2021.729154

    Article  Google Scholar 

  31. Kamal KY, Herranz R, Van Loon JJWA, Medina FJ (2018) Simulated microgravity, Mars gravity, and 2g hypergravity affect cell cycle regulation, ribosome biogenesis, and epigenetics in Arabidopsis cell cultures. Sci Rep 8:1–16

    Article  Google Scholar 

  32. Maggi F, Pallud C (2010) Martian base agriculture: the effect of low gravity on water flow, nutrient cycles, and microbial biomass dynamics. Adv Space Res 46:1257–1265. https://doi.org/10.1016/j.asr.2010.07.012

    Article  CAS  Google Scholar 

  33. Massa G, Newsham G, Hummerick ME et al (2013) Preliminary species and media selection for the veggie space hardware. Gravit Space Res 1:95–106. https://doi.org/10.2478/gsr-2013-0008

    Article  Google Scholar 

  34. Massa G, Newsham G, Caro J, et al (2011) Crop and Substrate Tests with Single Use Rooting “Pillows” for the VEGGIE Plant Growth Hardware. ntrs.nasa.gov

  35. Yu C, Liu H, Xing Y et al (2008) Bioconversion of rice straw into a soil-like substrate. Acta Astronaut 63:1037–1042. https://doi.org/10.1016/j.actaastro.2008.03.010

    Article  CAS  Google Scholar 

  36. Wamelink GWW, Frissel JY, Krijnen WHJ et al (2014) Can plants grow on mars and the moon: a growth experiment on mars and moon soil simulants. PLoS ONE. https://doi.org/10.1371/journal.pone.0103138

    Article  Google Scholar 

  37. Wamelink GWW, Frissel JY, Krijnen WHJ, Verwoert MR (2019) Crop growth and viability of seeds on Mars and Moon soil simulants. Open Agricult 4:509–516. https://doi.org/10.1515/opag-2019-0051

    Article  Google Scholar 

  38. Fackrell LE (2021) Applications of critical zone science in the exploration of mars. University of Georgia

  39. Sumner ME, Yamada T (2002) Farming with acidity. Commun Soil Sci Plant Anal 33:2467–2496. https://doi.org/10.1081/CSS-120014461

    Article  CAS  Google Scholar 

  40. Murphy PNC, Stevens RJ (2010) Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water Air Soil Pollut 212:101–111. https://doi.org/10.1007/s11270-010-0325-0

    Article  CAS  Google Scholar 

  41. Schuerger AC, Ming DW, Newsom HE et al (2002) Near-term lander experiments for growing plants on Mars: requirements for information on chemical and physical properties of Mars regolith. Life Support Biosph Sci 8:137–147

    Google Scholar 

  42. Weete JD, Walkinshaw CH (1972) Apollo 12 lunar material: effects on plant pigments. Can J Bot 50:101–104. https://doi.org/10.1139/b72-015

    Article  CAS  Google Scholar 

  43. Walkinshaw CH, Johnson PH (1971) Analysis of vegetable seedlings grown in contact with apollo 14 lunar surface fines1. HortScience 6:532–535

    Article  CAS  Google Scholar 

  44. Walkinshaw CH, Sweet HC, Venketeswaran S, Horne WH (1970) Results of apollo 11 and 12 quarantine studies on plants. Bioscience 20:1297–1302. https://doi.org/10.2307/1295365

    Article  Google Scholar 

  45. Baur PS, Ps B, Rs C et al (1974) Uptake and translocation of elements from Apollo 11 lunar material by lettuce seedlings. Phyton 32:133–142

    CAS  Google Scholar 

  46. Milov M, Rusakova G (1980) Greenhouses in space-higher plants in closed ecological systems. Aviatsia Ei Cosmonautika 3:36–37

    Google Scholar 

  47. Walkinshaw CH (1986) Space greenhouses could operate efficiently at low pressures if fungi are controlled. Phytopathology 76:1141

    Google Scholar 

  48. Ming DW (douglas W), Henninger DL (donald L). (1989) Lunar base agriculture: soils for plant growth. American Society of Agronomy: Crop Science Society of America: Soil Science Society of America. Madison, Wisconsin

  49. Fairchild KO, Roberts BB (2015) Options for the human settlement of the moon and mars. In: Lunar Base Agriculture: Soils for Plant Growth. American Society of Agronomy, Crop Science Society of America. Soil Science Society of America. Madison. WI, USA. pp 1–22

  50. Mashinskiy A, Nechitaylo G (1983) Birth of space agriculture. Tek Molodezhi 4:2–7

    Google Scholar 

  51. Cannon KM, Britt DT (2019) Feeding one million people on mars. New Space 7:245–254. https://doi.org/10.1089/space.2019.0018

    Article  Google Scholar 

  52. Mortley D, Aglan H, Bonsi C, Hill W (2000) Growth of Sweetpotato in Lunar and Mars Simulants. In: SAE Technical Paper 2000–01–2289. SAE International

  53. Aglan H, Mortley D, Trotman A et al (1998) Sweetpotato growth using a microporous tube system with lunar simulant medium. SAE Trans J Mater Manuf 107:1012–1016

    Google Scholar 

  54. Lytvynenko T, Zaetz I, Voznyuk T et al (2006) A rationally assembled microbial community for growing Tagetes patula L. in a lunar greenhouse. Res Microbiol 157:87–92. https://doi.org/10.1016/j.resmic.2005.07.009

    Article  Google Scholar 

  55. Kozyrovska NO, Lutvynenko TL, Korniichuk OS et al (2006) Growing pioneer plants for a lunar base. Adv Space Res 37:93–99. https://doi.org/10.1016/j.asr.2005.03.005

    Article  Google Scholar 

  56. Zaets I, Burlak O, Rogutskyy I et al (2011) Bioaugmentation in growing plants for lunar bases. Adv Space Res 47:1071–1078. https://doi.org/10.1016/j.asr.2010.11.014

    Article  CAS  Google Scholar 

  57. Oze C, Beisel J, Dabsys E et al (2021) Perchlorate and agriculture on Mars. Soil Systems. 5:10. https://doi.org/10.3390/soilsystems5030037

    Article  CAS  Google Scholar 

  58. Caporale AG, Vingiani S, Palladino M et al (2020) Geo-mineralogical characterisation of Mars simulant MMS-1 and appraisal of substrate physico-chemical properties and crop performance obtained with variable green compost amendment rates. Sci Total Environ 720:137543. https://doi.org/10.1016/j.scitotenv.2020.137543

    Article  CAS  Google Scholar 

  59. Duri LG, El-Nakhel C, Caporale AG et al (2020) Mars regolith simulant ameliorated by compost as in situ cultivation substrate improves lettuce growth and nutritional aspects. Plants. https://doi.org/10.3390/plants9050628

    Article  Google Scholar 

  60. Cannon KM, Britt DT, Smith TM et al (2019) Mars global simulant MGS-1: a Rocknest-based open standard for basaltic martian regolith simulants. Icarus 317:470–478. https://doi.org/10.1016/j.icarus.2018.08.019

    Article  CAS  Google Scholar 

  61. Edmunson J, McLemore CA, Rickman DL, Edmunson J, McLemore CA, Rickman DL (2012) Appropriate simulants are a requirement for Mars surface technology. Concept Approaches Mars Exp 1679:2–3

    Google Scholar 

  62. Scott AN, Oze C, Tang Y, O’Loughlin A (2017) Development of a Martian regolith simulant for in-situ resource utilization testing. Acta Astronaut 131:45–49. https://doi.org/10.1016/j.actaastro.2016.11.024

    Article  Google Scholar 

  63. Duri LG, Caporale AG, Rouphael Y et al (2022) The potential for lunar and martian regolith simulants to sustain plant growth: a multidisciplinary overview. Front Astron Space Sci. https://doi.org/10.3389/fspas.2021.747821

    Article  Google Scholar 

  64. Fackrell LE, Loureiro R, Palmer A (2021) Topical: The case for a set of ‘best practices’ in regolith-based agriculture applied to bioregenerative food systems: White Paper Submitted to the Decadal Survey on Biological and Physical Sciences Research in Space 2023–2032

  65. Visscher AM, Paul AL, Kirst M et al (2010) Growth performance and root transcriptome remodeling of arabidopsis in response to mars-like levels of magnesium sulfate. PLoS ONE. https://doi.org/10.1371/journal.pone.0012348

    Article  Google Scholar 

  66. Guinan EF (2018) Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant. In: American Astronomical Society Meeting Abstracts #231. AA (Villanova University). 401.06

  67. Guzman G, Guinan EF, Engle S (2019) The Red Thumbs: Growing Plants on Martian Regolith Simulant. In: American Astronomical Society Meeting Abstracts #233. AA(Astronomy and Astrophysics, Villanova University, Villanova, PA, United States), AB(Astronomy and Astrophysics, Villanova University, Villanova, PA, United States), AC(Astronomy and Astrophysics, Villanova University, Villanova, PA, United States), p 257.05

  68. Eglin A, Guinan E (2020) The Mars Gardens: a comparison of the viability of plants grown in Martian simulant regolith and in a hydroponics system. In: American Astronomical Society Meeting Abstracts #235. AA(Villanova University, Villanova, PA), AB(Villanova University, Villanova, PA), p 212.01

  69. Peters GH, Abbey W, Bearman GH et al (2008) Mojave Mars simulant-characterization of a new geologic Mars analog. Icarus 197:470–479. https://doi.org/10.1016/j.icarus.2008.05.004

    Article  Google Scholar 

  70. Allen CC, Morris RV, Lindstrom DJ, et al (1997) Martian Regolith Simulant JSC Mars-1. Lunar and planetary science conference XXVIII

  71. Ramírez DA, Kreuze J, Amoros W et al (2017) Extreme salinity as a challenge to grow potatoes under Mars-like soil conditions: targeting promising genotypes. Int J Astrobiol. https://doi.org/10.1017/S1473550417000453

    Article  Google Scholar 

  72. Toner JD, Catling DC, Light B (2014) Soluble salts at the phoenix lander site, Mars: a reanalysis of the wet chemistry laboratory data. Geochim Cosmochim Acta 136:142–168. https://doi.org/10.1016/j.gca.2014.03.030

    Article  CAS  Google Scholar 

  73. Kounaves SP, Hecht MH, Kapit J et al (2010) Soluble sulfate in the martian soil at the Phoenix landing site. Geophys Res Lett 37:1–5. https://doi.org/10.1029/2010GL042613

    Article  CAS  Google Scholar 

  74. Hamissou M (2011) Selected physiological and molecular responses of Arabidopsis thaliana and Nicotiana tobacum plants irrigated with perhclorate-containing water. Asian J Plant Sci 10:255–262

    Article  CAS  Google Scholar 

  75. Davila AF, Willson D, Coates JD, McKay CP (2013) Perchlorate on Mars: a chemical hazard and a resource for humans. Int J Astrobiol 12:321–325. https://doi.org/10.1017/S1473550413000189

    Article  CAS  Google Scholar 

  76. O’Hara S (2015) Food security: the urban food hub solution. Solutions 6:42–52

    Google Scholar 

Download references

Acknowledgements

Great thanks to acknowledge my advisors Paul Schroder, Nitin Singh, and Kasthuri Venkateswaran for their advice and guidance and my committee Paul Schroeder, Christian Klimczak, Aaron Thompson, and Mussie Habteselassie for their support and time commitments.

Funding

This work was supported by the Miriam Watts-Wheeler Fund in the department of geology at the University of Georgia, the Clay Minerals Society Research Grant Program, and Sigma Xi grants in aid of research [Grant Number G20201001105594777].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Fackrell.

Ethics declarations

Conflict of interest

The authors report no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fackrell, L. A Review of Off-World in Bioregenerative Food Systems. J Indian Inst Sci 103, 807–817 (2023). https://doi.org/10.1007/s41745-023-00381-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-023-00381-w

Keywords

Navigation