Abe N (2019) On soergel bimodules. arXiv:1901.02336
Abe N (2021) A homomorphism between Bott–Samelson bimodules. arXiv:2012.09414
Anno R, Bezrukavnikov R, Mirković I (2015) Stability conditions for Slodowy slices and real variations of stability. Mosc Math J 15(2):187–203 (403)
Article
Google Scholar
Andruskiewitsch N, Santos WF (2009) The beginnings of the theory of Hopf algebras. Acta Appl Math 108(1):3–17
Article
Google Scholar
Andersen HH, Jantzen JC, Soergel W (1994) Representations of quantum groups at a \(p\)th root of unity and of semisimple groups in characteristic \(p\): independence of \(p\). Astérisque (220):321
Alexander J (1923) A lemma on systems of knotted curves. Proc Natl Acad 9(3):93–95
CAS
Article
Google Scholar
Achar PN, Makisumi S, Riche S, Williamson G (2019) Koszul duality for Kac–Moody groups and characters of tilting modules. J Am Math Soc 32(1):261–310
Article
Google Scholar
Andruskiewitsch N, Schneider H-J (2010) On the classification of finite-dimensional pointed Hopf algebras. Ann Math (2) 171(1):375–417
Article
Google Scholar
Blundell C, Buesing L, Davies A, Velickovic P, Williamson G (2021) Towards combinatorial invariance for Kazhdan–Lusztig polynomials. arXiv:2111.15161
Björner A, Ekedahl T (2009) On the shape of Bruhat intervals. Ann Math (2) 170(2):799–817
Article
Google Scholar
Belolipetsky M (2004) Cells and representations of right-angled Coxeter groups. Selecta Math (NS) 10(3):325–339
Article
Google Scholar
Belolipetsky M, Gunnells P (2015) Kazhdan Lusztig cells in infinite Coxeter groups. J Gen Lie Theory Appl 9(S1):S1–002, 4
Belolipetsky M, Gunnells P, Scott RA (2014) Kazhdan–Lusztig cells in planar hyperbolic Coxeter groups and automata. Int J Algebra Comput 24(5):757–772
Article
Google Scholar
Belolipetsky MV, Gunnells PE, Scott RA (2014) Kazhdan–Lusztig cells in planar hyperbolic Coxeter groups and automata. Int J Algebra Comput 24(5):757–772
Article
Google Scholar
Bernstein J, Lunts V (1994) Equivariant sheaves and functors, vol 1578. Lecture notes in mathematics. Springer, Berlin
Google Scholar
Block RE (1981) The irreducible representations of the Lie algebra \(\mathfrak{sl}_2\) and of the Weyl algebra. Adv Math 39(1):69–110
Article
Google Scholar
Burrull G, Libedinsky N, Plaza D (2021) Combinatorial invariance conjecture for \(\widetilde{A}_2\). arXiv:2105.04609
Burrull G, Libedinsky N, Sentinelli P (2019) \(p\)-Jones–Wenzl idempotents. Adv Math 352:246–264
Article
Google Scholar
Bezrukavnikov R, Riche S (2021) Hecke action on the principal block. arXiv:2009.10587
Brenti F (1998) Kazhdan–Lusztig and \(R\)-polynomials from a combinatorial point of view. vol 193, pp 93–116. Selected papers in honor of Adriano Garsia (Taormina, 1994)
Bridgeland T (2007) Stability conditions on triangulated categories. Ann Math (2) 166(2):317–345
Article
Google Scholar
Bruhat F (1954) Représentations induites des groupes de Lie semi-simples complexes. C R Acad Sci Paris 238:437–439
Google Scholar
Connes A, Consani C (2011) Characteristic 1, entropy and the absolute point. Noncommutative geometry. Arithmetic, and related topics. Johns Hopkins Univ. Press, Baltimore, pp 75–139
Google Scholar
Chen ER, Engel M, Glotzer SC (2010) Dense crystalline dimer packings of regular tetrahedra. Discrete Comput Geom 44(2):253–280
Article
Google Scholar
Crane L, Frenkel IB (1994) Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. vol 35, pp 5136–5154. Topology and physics
Chevalley C (1955) Sur certains groupes simples. Tohoku Math J 2(7):14–66
Google Scholar
Ciappara J (2021) Hecke category actions via Smith–Treumann theory. arXiv:2103.07091
Chari V, Pressley A (1994) A guide to quantum groups. Cambridge University Press, Cambridge
Google Scholar
Crane L (1995) Clock and category: is quantum gravity algebraic? J Math Phys 36(11):6180–6193
Article
Google Scholar
Deligne P (2007) La catégorie des représentations du groupe symétrique \(S_t\), lorsque \(t\) n’est pas un entier naturel. In: Algebraic groups and homogeneous spaces, volume 19 of Tata Inst. Fund. Res. Stud. Math.. Tata Inst. Fund. Res., Mumbai, pp 209–273
Deninger C (1992) Local \(L\)-factors of motives and regularized determinants. Invent Math 107(1):135–150
Article
Google Scholar
Diaconis P (1988) Group representations in probability and statistics, vol 11. Institute of Mathematical Statistics Lecture Notes-Monograph Series. Institute of Mathematical Statistics, Hayward
Dieudonné J (1977) Panorama des mathématiques pures. Gauthier-Villars, Paris. Le choix bourbachique. [The Bourbakian choice]
Dipper R, James G (1991) \(q\)-tensor space and \(q\)-Weyl modules. Trans Am Math Soc 327(1):251–282
Google Scholar
Drinfel’d V (1987) Quantum groups. In: Proceedings of the International Congress of Mathematicians, vol 1, 2 (Berkeley, Calif., 1986). Amer. Math. Soc., Providence, pp 798–820
Davies A, Velickovic P, Buesing L, Blackwell S, Zheng D, Tomašev N, Tanburn R, Battaglia P, Blundell C, Juhasz A, Lackenby M, Williamson G, Hassabis D, Kohli P (2021) Advancing mathematics by guiding human intuition with AI. Nature 600:70–74
CAS
Article
Google Scholar
Elias B, Khovanov M (2010) Diagrammatics for Soergel categories. Int J Math Math Sci. Art. ID 978635, 58
Elias B, Libedinsky N (2017) Indecomposable Soergel bimodules for universal Coxeter groups. Trans Am Math Soc 369(6):3883–3910 (With an appendix by Ben Webster)
Article
Google Scholar
Elias B (2014) Quantum satake in type a: part I. arXiv:1403.5570
Elias B (2015) Light ladders and clasp conjectures. arXiv:1510.06840
Elias B (2016) Thicker Soergel calculus in type \(A\). Proc Lond Math Soc (3) 112(5):924–978
Article
Google Scholar
Elias B (2016) The two-color Soergel calculus. Compos Math 152(2):327–398
Article
Google Scholar
Elias B, Makisumi S, Thiel U, Williamson G (2020) Introduction to Soergel bimodules, volume 5 of RSME springer series. Springer, Cham
Book
Google Scholar
Elias B, Williamson G (2014) The Hodge theory of Soergel bimodules. Ann Math (2) 180(3):1089–1136
Article
Google Scholar
Elias B, Williamson G (2016) Soergel calculus. Represent Theory 20:295–374
Article
Google Scholar
Elias B, Williamson G (2021) Relative hard Lefschetz for Soergel bimodules. J Eur Math Soc (JEMS) 23(8):2549–2581
Article
Google Scholar
Freudenthal H, de Vries H (1969) Linear Lie groups. Pure and applied mathematics, vol 35. Academic Press, New York-London
Google Scholar
Gowers T, Barrow-GJ Leader I (eds) (2008) The Princeton companion to mathematics. Princeton University Press, Princeton
Google Scholar
Gerstenhaber M (1964) On the deformation of rings and algebras. Ann Math 2(79):59–103
Article
Google Scholar
Gobet T, Thiel A-L (2020) A Soergel-like category for complex reflection groups of rank one. Math Z 295(1–2):643–665
Article
Google Scholar
Howlett R, Lehrer G (1980) Induced cuspidal representations and generalised Hecke rings. Invent Math 58(1):37–64
Article
Google Scholar
Huh J (2018) Combinatorial applications of the Hodge-Riemann relations. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pp 3093–3111. World Sci. Publ., Hackensack
Iwahori N, Matsumoto H (1965) On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups. Inst Hautes Études Sci Publ Math 25:5–48
Article
Google Scholar
Iwahori N (1964) On the structure of a Hecke ring of a Chevalley group over a finite field. J Fac Sci Univ Tokyo Sect I(10):215–236
Google Scholar
Jensen LT (2017) The 2-braid group and Garside normal form. Math Z 286(1–2):491–520
Article
Google Scholar
Jensen LT (2021) Correction of the Lusztig–Williamson billiards conjecture. arXiv:2105.04665
Jimbo M (1986) A \(q\)-analogue of \(U({\mathfrak{gl}}(N+1))\), Hecke algebra, and the Yang–Baxter equation. Lett Math Phys 11(3):247–252
Article
Google Scholar
James G, Kerber A (1981) The representation theory of the symmetric group, volume 16 of encyclopedia of mathematics and its applications. Addison-Wesley Publishing Co., Reading, Mass. With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson
Jones VFR (1985) A polynomial invariant for knots via von Neumann algebras. Bull Am Math Soc (NS) 12(1):103–111
Article
Google Scholar
Joyal A, Street R (1993) Braided tensor categories. Adv Math 102(1):20–78
Article
Google Scholar
Joyal A, Street R (1995) The category of representations of the general linear groups over a finite field. J Algebra 176(3):908–946
Article
Google Scholar
Jensen LT, Williamson G (2017) The \(p\)-canonical basis for Hecke algebras. In: Categorification and higher representation theory, volume 683 of contemp. math., pp 333–361. Amer. Math. Soc., Providence
Kamada S (2002) Braid and knot theory in dimension four, volume 95 of mathematical surveys and monographs. American Mathematical Society, Providence
Book
Google Scholar
Khovanov M (2007) Triply-graded link homology and Hochschild homology of Soergel bimodules. Int J Math 18(8):869–885
Article
Google Scholar
Kazhdan D, Lusztig G (1979) Representations of Coxeter groups and Hecke algebras. Invent Math 53(2):165–184
Article
Google Scholar
Kostant B (1959) A formula for the multiplicity of a weight. Trans Am Math Soc 93:53–73
Article
Google Scholar
Khovanov M, Seidel P (2002) Quivers, Floer cohomology, and braid group actions. J Am Math Soc 15(1):203–271
Article
Google Scholar
Khovanov M, Sitaraman M, Tubbenhauer D (2022) Monoidal categories, representation gap and cryptography. arXiv:2201.01805
Kassel C, Turaev V (2008) Braid groups, volume 247 of graduate texts in mathematics. Springer, New York. With the graphical assistance of Olivier Dodane
Kurokawa N (1992) Multiple zeta functions: an example. In: Zeta functions in geometry (Tokyo, 1990), volume 21 of adv. stud. pure math.. Kinokuniya, Tokyo, pp 219–226
Libedinsky N (2008) Auteur de la catégorie des bimodules de Soergel. Thèse de Doctorat Université Paris 7
Libedinsky N (2008) Équivalences entre conjectures de Soergel. J Algebra 320(7):2695–2705
Article
Google Scholar
Libedinsky N (2008) Sur la catégorie des bimodules de Soergel. J Algebra 320(7):2675–2694
Article
Google Scholar
Libedinsky N (2010) Presentation of right-angled Soergel categories by generators and relations. J Pure Appl Algebra 214(12):2265–2278
Article
Google Scholar
Libedinsky N (2011) New bases of some Hecke algebras via Soergel bimodules. Adv Math 228(2):1043–1067
Article
Google Scholar
Libedinsky N (2015) Light leaves and Lusztig’s conjecture. Adv Math 280:772–807
Article
Google Scholar
Libedinsky N (2019) Gentle introduction to Soergel bimodules I: the basics. São Paulo J Math Sci 13(2):499–538
Article
Google Scholar
Littelmann P (1995) Paths and root operators in representation theory. Ann Math (2) 142(3):499–525
Article
Google Scholar
Lascoux A, Leclerc B, Thibon J-Y (1995) Crystal graphs and \(q\)-analogues of weight multiplicities for the root system \(A_n\). Lett Math Phys 35(4):359–374
Article
Google Scholar
Loeb D (1992) Sets with a negative number of elements. Adv Math 91(1):64–74
Article
Google Scholar
Libedinsky N, Patimo L (2020) On the affine Hecke category for \(sl_3\). arXiv:2005.02647
Lopez Peña J, Lorscheid O (2011) Mapping \({}_1\)-land: an overview of geometries over the field with one element. In: Noncommutative geometry, arithmetic, and related topics. Johns Hopkins Univ. Press, Baltimore, pp 241–265
Libedinsky N, Patimo L, Plaza D (2021) Pre-canonical bases. arXiv:2103.06903
Lascoux A, Schützenberger M-P (1978) Sur une conjecture de H. O. Foulkes. C R Acad Sci Paris Sér A-B 286(7):A323–A324
Google Scholar
Lusztig G (2010) Bruhat decomposition and applications. arXiv:1006.5004
Libedinsky N, Williamson G (2014) Standard objects in 2-braid groups. Proc Lond Math Soc (3) 109(5):1264–1280
Article
Google Scholar
Libedinsky N, Williamson G (2017) The anti-spherical category. arXiv:1702.00459
Lusztig G, Williamson G (2018) Billiards and tilting characters for \({\rm SL}_3\). SIGMA Symmetry Integr Geom Methods Appl 14:Paper No. 015, 22
Libedinsky N, Williamson G (2021) Kazhdan–Lusztig polynomials and subexpressions. J Algebra 568:181–192
Article
Google Scholar
Makisumi S (2019) On monoidal Koszul duality for the Hecke category. Rev Colombiana Mat 53(suppl.):195–222
Article
Google Scholar
Manin Y (1992) Lectures on zeta functions and motives (according to Deninger and Kurokawa). vol 228, pp 121–163. 1995. Columbia University Number Theory Seminar (New York)
Maschke H (1898) Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen. Math Ann 50(4):492–498
Article
Google Scholar
Matsumoto H (1964) Générateurs et relations des groupes de Weyl généralisés. C R Acad Sci Paris 258:3419–3422
Google Scholar
Mirković I, Vilonen K (2007) Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann Math (2) 166(1):95–143
Article
Google Scholar
Patimo L (2021) Charges via the Affine Grassmannian. arXiv:2106.02564
Plaza D (2017) Graded cellularity and the monotonicity conjecture. J Algebra 473:324–351
Article
Google Scholar
Plaza D (2019) Diagrammatics for Kazhdan–Lusztig \(\widetilde{R}\)-polynomials. Eur J Combin 79:193–213
Article
Google Scholar
Propp J (2003) Exponentiation and Euler measure. vol 49, pp 459–471. Dedicated to the memory of Gian-Carlo Rota
Palais R, Stewart T (1960) Deformations of compact differentiable transformation groups. Am J Math 82:935–937
Article
Google Scholar
Rouquier R (2006) Categorification of \({\mathfrak{sl}}_2\) and braid groups. In: Trends in representation theory of algebras and related topics, volume 406 of contemp. math.. Amer. Math. Soc., Providence, pp 137–167
Riche S, Williamson G (2018) Tilting modules and the \(p\)-canonical basis. Astérisque (397):ix+184
Sahi S (2000) A new formula for weight multiplicities and characters. Duke Math J 101(1):77–84
Article
Google Scholar
Schanuel SH (1991) Negative sets have Euler characteristic and dimension. In: Category theory (Como, 1990), volume 1488 of lecture notes in math.. Springer, Berlin, pp 379–385
Schützer W (2012) A new character formula for Lie algebras and Lie groups. J Lie Theory 22(3):817–838
Google Scholar
Senechal M (1981) Which tetrahedra fill space? Math Mag 54(5):227–243
Article
Google Scholar
Sentinelli P (2021) Artin group injection in the Hecke algebra for right-angled groups. Geom Dedicata 214:193–210
Article
Google Scholar
Serre J-P (1955) Géométrie algébrique et géométrie analytique. Ann Inst Fourier (Grenoble) 6:1–42 (56)
Article
Google Scholar
Shimura G (1959) Sur les intégrales attachées aux formes automorphes. J Math Soc Jpn 11:291–311
Google Scholar
Shimura G (1999) André Weil as I knew him. Not Am Math Soc 46(4):428–433
Google Scholar
Soergel W (1992) The combinatorics of Harish–Chandra bimodules. J Reine Angew Math 429:49–74
Google Scholar
Soergel W (1998) On the relation between intersection cohomology and representation theory in positive characteristic, vol 152, pp 311–335. 2000. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome)
Soergel W (2007) Kazhdan–Lusztig–Polynome und unzerlegbare Bimoduln über Polynomringen. J Inst Math Jussieu 6(3):501–525
Article
Google Scholar
Soulé C (2004) Les variétés sur le corps à un élément. Mosc Math J 4(1):217–244 (312)
Article
Google Scholar
Steinberg R (1951) A geometric approach to the representations of the full linear group over a Galois field. Trans Am Math Soc 71:274–282
Article
Google Scholar
Steinberg R (1963) Representations of algebraic groups. Nagoya Math J 22:33–56
Article
Google Scholar
Sutton L, Tubbenhauer D, Wedrich P, Zhu J (2021) \({S}{L}_2\) tilting modules in the mixed case. arXiv:2105.07724
Tits J (1957) Sur les analogues algébriques des groupes semi-simples complexes. In: Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pp 261–289. Établissements Ceuterick, Louvain, Librairie Gauthier-Villars, Paris
References for kazhdan-lusztig theory. https://www.math.ucdavis.edu/~vazirani/S05/KL.details.html. Accessed: 2021-11-15
Williamson G, Braden T (2012) Modular intersection cohomology complexes on flag varieties. Math Z 272(3–4):697–727
Article
Google Scholar
Weyl H (1925) Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I. Math Z 23(1):271–309
Article
Google Scholar
Williamson G (2017) Schubert calculus and torsion explosion. J Am Math Soc 30(4):1023–1046 (With a joint appendix with Alex Kontorovich and Peter J. McNamara)
Article
Google Scholar
Yale PB (1966) Automorphisms of the complex numbers. Math Mag 39(3):135–141
Article
Google Scholar