Skip to main content
Log in

Bayesian Modeling of Discrete-Time Point-Referenced Spatio-Temporal Data

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Discrete-time point-referenced spatio-temporal data are obtained by collecting observations at arbitrary but fixed spatial locations \(\varvec{s}_{1},\varvec{s}_{2},\ldots ,\varvec{s}_{n}\) at regular intervals of time \(t := 1,2,\ldots ,T\). They are encountered routinely in meteorological and environmental studies. Gaussian linear dynamic spatio-temporal models (LDSTMs) are the most widely used models for fitting and prediction with them. While Gaussian LDSTMs demonstrate good predictive performance at a wide range of scenarios, discrete-time point-referenced spatio-temporal data, often being the end product of complex interactions among environmental processes, are better modeled by nonlinear dynamic spatio-temporal models (NLDSTMs). Several such nonlinear models have been proposed in the context of precipitation, deposition, and sea-surface temperature modeling. Some of the above-mentioned models, although are fitted classically, dynamic spatio-temporal models with their complex dependence structure, are more naturally accommodated within the fully Bayesian framework. In this article, we review many such linear and nonlinear Bayesian models for discrete-time point-referenced spatio-temporal data. As we go along, we also review some nonparametric spatio-temporal models as well as some recently proposed Bayesian models for massive spatio-temporal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Cressie and Wikle17 covered a wide range of materials on spatio-temporal modeling that serves as the main resource for many of the models that we cite subsequently.

References

  1. Amini H, Taghavi-Shahri SM, Henderson SB, Hosseini V, Hassankhany H, Naderi M, Ahadi S, Schindler C, Künzli N, Yunesian M (2016) Annual and seasonal spatial models for nitrogen oxides in Tehran, Iran. Sci Rep 6(1):1–11

    Google Scholar 

  2. Banerjee S (2017) High-dimensional Bayesian geostatistics. Bayesian Anal 12(2):583

    Google Scholar 

  3. Banerjee S, Carlin B.P, Gelfand A.E (2003) Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC

    Google Scholar 

  4. Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J R Stat Soc Ser B (Statistical Methodology) 70(4):825–848

    Google Scholar 

  5. Berger J, De Oliveira V, Sansó B, Ren C, Wittig T (2003) Objective Bayesian analysis of spatially correlated data (vol 96, pg 1361, 2001). J Am Stat Assoc 98(463):779–779

    Google Scholar 

  6. Berger JO, De Oliveira V, Sansó B (2001) Objective Bayesian analysis of spatially correlated data. J Am Stat Assoc 96(456):1361–1374

    Google Scholar 

  7. Berliner LM (1996) Hierarchical Bayesian time series models. In: Maximum entropy and Bayesian methods. edited by Kenneth M. Hanson and Richard N. Silver, Springer:15–22

  8. Berliner LM, Milliff RF, Wikle CK (2003) Bayesian hierarchical modeling of air-sea interaction. J Geophys Res Oceans 108(C4):1–18

  9. Berliner LM, Wikle CK, Cressie N (2000) Long-lead prediction of pacific ssts via Bayesian dynamic modeling. J Clim 13(22):3953–3968

    Google Scholar 

  10. Bloomfield P, Oehlert G, Thompson ML, Zeger S (1983) A frequency domain analysis of trends in Dobson total ozone records. J Geophys Res Oceans 88(C13):8512–8522

    CAS  Google Scholar 

  11. Bruno F, Guttorp P, Sampson PD, Cocchi D (2009) A simple non-separable, non-stationary spatiotemporal model for ozone. Environ Ecol Stat 16(4):515–529

    Google Scholar 

  12. Bueno RS, Fonseca TC, Schmidt AM (2017) Accounting for covariate information in the scale component of spatio-temporal mixing models. Spatial Stat 22:196–218

    Google Scholar 

  13. Carroll R, Chen R, George E, Li T, Newton H, Schmiediche H, Wang N (1997) Ozone exposure and population density in Harris county, Texas. J Am Stat Assoc 92(438):392–404

    Google Scholar 

  14. Chakraborty A, Gelfand AE, Wilson AM, Latimer AM, Silander JA Jr (2010) Modeling large scale species abundance with latent spatial processes. Ann Appl Stat 4(3):1403–1429

    Google Scholar 

  15. Cox D.R, Isham V (1988) A simple spatial-temporal model of rainfall. Proc R Soc Lond A Math Phys Sci 415(1849):317–328

    Google Scholar 

  16. Cressie N, Huang HC (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94(448):1330–1339

    Google Scholar 

  17. Cressie N, Wikle CK (2015) Statistics for spatio-temporal data. Wiley

    Google Scholar 

  18. Daniels MJ, Kass RE (1999) Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. J Am Stat Assoc 94(448):1254–1263

    Google Scholar 

  19. Das M, Bhattacharya S (2014) Nonstationary, nonparametric, nonseparable Bayesian spatio-temporal modeling using kernel convolution of order based dependent Dirichlet process. arXiv preprint arXiv:1405.4955

  20. Datta A, Banerjee S, Finley AO, Hamm NA, Schaap M (2016) Nonseparable dynamic nearest neighbor gaussian process models for large spatio-temporal data with an application to particulate matter analysis. Ann Appl Stat 10(3):1286

    Google Scholar 

  21. Davis RA, Klüppelberg C, Steinkohl C (2013) Statistical inference for max-stable processes in space and time. J R Stat Soc Ser B (Statistical Methodology) 75(5):791–819

    Google Scholar 

  22. Deng JS, Wang K, Hong Y, Qi JG (2009) Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc Urban Plan 92(3–4):187–198

    Google Scholar 

  23. Dimitrakopoulos R, Luo X (1997) Joint space-time modeling in the presence of trends. In: Geostatistics Wollongong’96 1: 138–149

  24. Dou Y, Le ND, Zidek JV (2010) Modeling hourly ozone concentration fields. Ann Appl Stat 4(3):1183–1213

    Google Scholar 

  25. Fonseca TC, Steel MF (2011) Non-gaussian spatiotemporal modelling through scale mixing. Biometrika 98(4):761–774

    Google Scholar 

  26. Fuentes M (2002) Spectral methods for nonstationary spatial processes. Biometrika 89(1):197–210

    Google Scholar 

  27. Fuentes M, Chen L, Davis JM (2008) A class of nonseparable and nonstationary spatial temporal covariance functions. Environmetrics 19(5):487–507

    CAS  Google Scholar 

  28. Furrer R, Sain SR (2009) Spatial model fitting for large datasets with applications to climate and microarray problems. Stat Comput 19(2):113–128

    Google Scholar 

  29. Gamerman D, Lopes HF, Salazar E (2008) Spatial dynamic factor analysis. Bayesian Anal 3(4):759–792

    Google Scholar 

  30. Gelfand AE, Banerjee S (2017) Bayesian modeling and analysis of geostatistical data. Annu Rev Stat Appl 4:245–266

    Google Scholar 

  31. Gelfand AE, Banerjee S, Gamerman D (2005) Spatial process modelling for univariate and multivariate dynamic spatial data. Environmetrics 16(5):465–479

    Google Scholar 

  32. Gelfand A.E, Diggle P, Guttorp P, Fuentes M (2010) Handbook of spatial statistics. CRC Press

    Google Scholar 

  33. Gelfand AE, Ecker MD, Knight JR, Sirmans C (2004) The dynamics of location in home price. J Real Estate Finance Econ 29(2):149–166

    Google Scholar 

  34. Giannitrapani M, Bowman A, Scott M, Smith R (2006) Sulphur dioxide in Europe: statistical relationships between emissions and measured concentrations. Atmos Environ 40(14):2524–2532

    CAS  Google Scholar 

  35. Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97(458):590–600

    Google Scholar 

  36. Guha S, Bhattacharya S (2014) Gaussian random functional dynamic spatio-temporal modeling of discrete time spatial time series data. arXiv preprint arXiv:1405.6531

  37. Guttorp P, Meiring W, Sampson PD (1994) A space-time analysis of ground-level ozone data. Environmetrics 5(3):241–254

    Google Scholar 

  38. Haas TC (1990) Lognormal and moving window methods of estimating acid deposition. J Am Stat Assoc 85(412):950–963

    Google Scholar 

  39. Heaton MJ, Datta A, Finley AO, Furrer R, Guinness J, Guhaniyogi R, Gerber F, Gramacy RB, Hammerling D, Katzfuss M et al (2019) A case study competition among methods for analyzing large spatial data. J Agric Biol Environ Stat 24(3):398–425

    Google Scholar 

  40. Higdon D (1998) A process-convolution approach to modelling temperatures in the north Atlantic ocean. Environ Ecol Stat 5(2):173–190

    Google Scholar 

  41. Holland DM, De OV, Cox LH, Smith RL (2000) Estimation of regional trends in sulfur dioxide over the eastern united states. Environmetrics 11(4):373–393

    CAS  Google Scholar 

  42. Hooten MB, Wikle CK (2007) Shifts in the spatio-temporal growth dynamics of shortleaf pine. Environ Ecol Stat 14(3):207–227

    Google Scholar 

  43. Huerta G, Sansó B, Stroud JR (2004) A spatiotemporal model for Mexico city ozone levels. J Roy Stat Soc Ser C (Appl Stat) 53(2):231–248

    Google Scholar 

  44. Hughes JP, Guttorp P (1994) A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour Res 30(5):1535–1546

    Google Scholar 

  45. Huser R, Davison AC (2014) Space-time modelling of extreme events. J R Stat Soc Ser B Stat Methodol 76(2):439–461

    Google Scholar 

  46. Jun M, Knutti R, Nychka DW (2008) Spatial analysis to quantify numerical model bias and dependence: How many climate models are there? J Am Stat Assoc 103(483):934–947

    CAS  Google Scholar 

  47. Jurek M, Katzfuss M (2021) Multi-resolution filters for massive spatio-temporal data. J Comput Graph Statist 30(4):1–16

    Google Scholar 

  48. Katzfuss M, Cressie N (2012) Bayesian hierarchical spatio-temporal smoothing for very large datasets. Environmetrics 23(1):94–107

    CAS  Google Scholar 

  49. Knight JR, Dombrow J, Sirmans C (1995) A varying parameters approach to constructing house price indexes. Real Estate Econ 23(2):187–205

    Google Scholar 

  50. Kyriakidis PC, Journel AG (1999) Geostatistical space-time models: a review. Math Geol 31(6):651–684

    Google Scholar 

  51. Lemos RT, Sansó B (2009) A spatio-temporal model for mean, anomaly, and trend fields of north Atlantic sea surface temperature. J Am Stat Assoc 104(485):5–18

    CAS  Google Scholar 

  52. Lu Z, Steinskog DJ, Tjøstheim D, Yao Q (2009) Adaptively varying-coefficient spatiotemporal models. J R Stat Soc Ser B (statistical methodology) 71(4):859–880

    Google Scholar 

  53. McDermott PL, Wikle CK (2017) An ensemble quadratic echo state network for non-linear spatio-temporal forecasting. Stat 6(1):315–330

    Google Scholar 

  54. McDermott PL, Wikle CK (2019) Bayesian recurrent neural network models for forecasting and quantifying uncertainty in spatial-temporal data. Entropy 21(2):184

    Google Scholar 

  55. McDermott PL, Wikle CK (2019) Deep echo state networks with uncertainty quantification for spatio-temporal forecasting. Environmetrics 30(3):e2553

    Google Scholar 

  56. Milliff R.F, Bonazzi A, Wikle C.K, Pinardi N, Berliner L.M (2011) Ocean ensemble forecasting. part i: ensemble Mediterranean winds from a Bayesian hierarchical model. Q J R Meteorol Soc 137(657):858–878

    Google Scholar 

  57. Paciorek CJ, Yanosky JD, Puett RC, Laden F, Suh HH (2009) Practical large-scale spatio-temporal modeling of particulate matter concentrations. Ann Appl Stat 3(1):370–397

    Google Scholar 

  58. Paez MS, Gamerman D, Landim FM, Salazar E (2008) Spatially varying dynamic coefficient models. J Stat Plan Inference 138(4):1038–1058

    Google Scholar 

  59. Reinsel G, Tiao GC, Wang M, Lewis R, Nychka D (1981) Statistical analysis of stratospheric ozone data for the detection of trends. Atmos Environ (1967) 15(9):1569–1577

    CAS  Google Scholar 

  60. Sahu SK, Gelfand AE, Holland DM (2010) Fusing point and areal level space-time data with application to wet deposition. J Roy Stat Soc Ser C (Appl Stat) 59(1):77–103

    Google Scholar 

  61. Sahu SK, Mardia KV (2005) A Bayesian kriged Kalman model for short-term forecasting of air pollution levels. J Roy Stat Soc Ser C (Appl Stat) 54(1):223–244

    Google Scholar 

  62. Sain SR, Furrer R, Cressie N (2011) A spatial analysis of multivariate output from regional climate models. Ann Appl Stat 5(1):150–175

    Google Scholar 

  63. Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87(417):108–119

    Google Scholar 

  64. Sang H, Jun M, Huang JZ (2011) Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors. Ann Appl Stat 5(4):2519–2548

    Google Scholar 

  65. Sans Ó B, Schmidt A.M, Nobre A.A (2008) Bayesian spatio-temporal models based on discrete convolutions. Can J Stat 36(2):239–258

    Google Scholar 

  66. Sanso B, Guenni L (1999) Venezuelan rainfall data analysed by using a Bayesian space-time model. J R Stat Soc Ser C (Appl Stat) 48(3):345–362

    Google Scholar 

  67. Schmidt AM, Gonçalves KC, Velozo PL (2017) Spatiotemporal models for skewed processes. Environmetrics 28(6):e2411

    Google Scholar 

  68. Smith RL, Tebaldi C, Nychka D, Mearns LO (2009) Bayesian modeling of uncertainty in ensembles of climate models. J Am Stat Assoc 104(485):97–116

    CAS  Google Scholar 

  69. Stein ML (2005) Space-time covariance functions. J Am Stat Assoc 100(469):310–321

    CAS  Google Scholar 

  70. Stroud JR, Müller P, Sansó B (2001) Dynamic models for spatiotemporal data. J R Stat Soc Ser B (Statistical Methodology) 63(4):673–689

    Google Scholar 

  71. Tebaldi C, Sansó B (2009) Joint projections of temperature and precipitation change from multiple climate models: a hierarchical Bayesian approach. J R Stat Soc A Stat Soc 172(1):83–106

    Google Scholar 

  72. Tonellato SF (2001) A multivariate time series model for the analysis and prediction of carbon monoxide atmospheric concentrations. J R Stat Soc Ser C (Appl Stat) 50(2):187–200

    Google Scholar 

  73. Tonellato SF et al (2005) Identifiability conditions for spatio-temporal Bayesian dynamic linear models. Metron-Int J Stat 63(1):81–101

    Google Scholar 

  74. Turkman KF, Turkman MA, Pereira J (2010) Asymptotic models and inference for extremes of spatio-temporal data. Extremes 13(4):375–397

    Google Scholar 

  75. Waller LA (2005) Bayesian thinking in spatial statistics. Handb Stat 25:589–622

    Google Scholar 

  76. Wikle CK (2019) Comparison of deep neural networks and deep hierarchical models for spatio-temporal data. J Agric Biol Environ Stat 24(2):175–203

    Google Scholar 

  77. Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5(2):117–154

    Google Scholar 

  78. Wikle CK, Holan SH (2011) Polynomial nonlinear spatio-temporal integro-difference equation models. J Time Ser Anal 32(4):339–350

    Google Scholar 

  79. Wikle CK, Hooten MB (2010) A general science-based framework for dynamical spatio-temporal models. TEST 19(3):417–451

    Google Scholar 

  80. Xu K, Wikle CK, Fox NI (2005) A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. J Am Stat Assoc 100(472):1133–1144

    CAS  Google Scholar 

  81. Zammit-Mangion A, Wikle CK (2020) Deep integro-difference equation models for spatio-temporal forecasting. Spatial Stat 37:100408

    Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous referee whose suggestions lead to an improvement of the review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Guha.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha, S., Bhattacharya, S. Bayesian Modeling of Discrete-Time Point-Referenced Spatio-Temporal Data. J Indian Inst Sci 102, 1189–1204 (2022). https://doi.org/10.1007/s41745-022-00298-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-022-00298-w

Keywords

Navigation