Skip to main content

Statistical Thermal Efficiency and Quantum Interactions


We statistically deal with two distinct quantum interactions embedded within an exactly solvable model that mimics some well known nuclear effects. By recourse to finite temperature statistical quantifiers we describe how these two fermion–fermion interactions compete and strongly influence each other. Statistically scrutinizing such competition leads to interesting insights on many body dynamics’ features. We discuss, in particular, the thermal efficiency of the fermion–fermion interactions

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:


  1. Cervia MJ et al. Lipkin model on a quantum computer. arXiv:2011.04097

  2. Lipkin HJ, Meshkov N, Glick AJ (1965) Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory. Nucl Phys 62:188

    CAS  Article  Google Scholar 

  3. Lerma HS, Dukelsky J (2014) The Lipkin-Meshkov-Glick model from the perspective of the SU(1,1) Richardson-Gaudin models. J Phys: Conf Ser 492:012013

    Google Scholar 

  4. Providencia C, da Providencia J, Tsue Y, Yamamura M The Lipkin Model in Many-Fermion system as an example of the su(1,1) times su(1,1)-algebraic model. arXiv:nucl-th$/$0604023

  5. Di Tullio M, Rossignoli R, Cerezo M, Gigena N (2019) Fermionic entanglement in the Lipkin model. Phys Rev 100:062104

    Article  Google Scholar 

  6. Nolting W (2009) Fundamentals of many-body physics. Springer-Verlag, Berlin

    Book  Google Scholar 

  7. Cambiaggio MC, Plastino A (1978) Quasi spin pairing and the structure of the Lipkin Model. Z Physik A 288:153

    CAS  Article  Google Scholar 

  8. Pennini F, Plastino A (2018) Complexity and disequilibrium as telltales of superconductivity. Phys A 506:828

    CAS  Article  Google Scholar 

  9. Plastino AR, Ferri GL, Plastino A (2021) Interaction between different kinds of quantum phase transitions. Quantum Rep 3:253

    Article  Google Scholar 

  10. Ring P, Schuck P (1980) The nuclear many-body problem. Springer, Berlin

    Book  Google Scholar 

  11. de Llano M, Tolmachev VV (2003) Multiple phases in a new statistical boson fermion model of superconductivity. Phys A 317:546

    Article  Google Scholar 

  12. Uys H, Miller HG, Khanna FC (2001) Generalized statistics and high-\(T_c\) superconductivity. Phys Lett A 289:264

    CAS  Article  Google Scholar 

  13. Plastino Angelo, Ferri Gustavo Luis, Plastino AR (2021) Spectral explanation for statistical odd-even staggering in few fermions systems. Quantum Rep 3:166–172

    Article  Google Scholar 

  14. Plastino A, Moszkowski SM (1978) Simplified model for illustrating Hartree-Fock in a Lipkin-model problem. Nuovo Cimento 47:470

    Article  Google Scholar 

  15. Rossignoli R, Plastino A (1985) Thermal effects and the interplay between pairing and shape deformations. Phys Rev C 32:1040

    CAS  Article  Google Scholar 

  16. López-Ruiz R, Mancini HL, Calbet X (1995) A statistical measure of complexity. Phys Lett A 209:321

    Article  Google Scholar 

  17. López-Ruiz R (2001) Complexity in some physical systems. Int J Bifurc Chaos 11:2669

    Article  Google Scholar 

  18. Martin MT, Plastino A, Rosso OA (2003) Statistical complexity and disequilibrium. Phys Lett A 311:126

    CAS  Article  Google Scholar 

  19. Rudnicki L, Toranzo IV, Sánchez-Moreno P, Dehesa JS (2016) Monotone measures of statistical complexity. Phys Lett A 380:377

    CAS  Article  Google Scholar 

  20. López-Ruiz R, Mancini H, Calbet X (2013) A Statistical Measure of Complexity in Concepts and recent advances in generalized information measures and statistics. In: Kowalski A, Rossignoli R, Curado EMC (eds) Bentham science books. pp 147–168, A. Kowalski, New York

  21. Sen KD (ed) (2011) Statistical complexity. Applications in electronic structure. Springer, Berlin

    Google Scholar 

  22. Martin MT, Plastino A, Rosso OA (2006) Physica A. Generalized statistical complexity measures: geometrical and analytical properties 369:439

    Google Scholar 

  23. Pennnini F, Plastino A (2017) Disequilibrium, thermodynamic relations, and Rnyis entropy. Phys Lett A 381:212

    Article  Google Scholar 

  24. Nigmatullin Ramil, Prokopenko Mikhail (2021) Thermodynamic efficiency of interactions in self-organizing systems. Entropy 23:757

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Angelo Plastino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plastino, A., Plastino, A.R. & Ferri, G.L. Statistical Thermal Efficiency and Quantum Interactions. J Indian Inst Sci (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Statitical quantifiers
  • Pairing interaction
  • Monopole interaction
  • Order–disorder