Skip to main content

A Review of Lamellar Eutectic Morphologies for Enhancing Thermoelectric and Mechanical Performance of Thermoelectric Materials

Abstract

We present in this review how the existence of lamellar eutectic morphologies in different classes of thermoelectric systems has been explored to enhance the thermoelectric and mechanical performance of such systems. Following a brief discussion on the physics of thermoelectricity, the case for using eutectic morphologies to achieve similar thermoelectric performance compared to those reported in multilayer thin-film and superlattice, was presented. This was followed by the presentation of eutectic morphologies in different classes of thermoelectric systems from traditional chalcogenide to half-Heusler and high-entropy alloys. Eutectic lamellar can be quickly produced in large quantities via traditional metallurgy routes that are cost-effective and can be scaled compared to other synthesis routes. As this review shows, eutectic morphologies could play a double role in simultaneously improving a thermoelectric device's thermoelectric and mechanical performance. These devices are of macroscale dimensions and require some measure of good energy conversion efficiencies and mechanical stability simultaneously.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:

References

  1. Bian Q (2020) Waste heat: the dominating root cause of current global warming. Environ Syst Res 9(1):8

    Article  Google Scholar 

  2. Bian Q (2019) The nature of climate change- equivalent climate change model’s application in decoding the root cause of global warming. Int J Environ Clim Change 9(12):801–822

    Article  CAS  Google Scholar 

  3. Rowe DM (2005) Thermoelectric handbook. CRC Press, Boca Raton, USA

    Google Scholar 

  4. Medlin DL, Snyder GJ (2009) Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science. Curr Opin Colloid Interface Sci 14(4):226–235

    CAS  Article  Google Scholar 

  5. Scherrer S, Scherrer H (2005) Thermoelectric properties of BismuthAntimony telluride solid solutions. In: Rowe DM (ed) Thermoelectrics handbook. CRC Press, pp 27-1–27-19

    Chapter  Google Scholar 

  6. Sang ILK, Kyunghan A, Dong-Hee Y, Sungwoo H, Hyun-Sik K, Sang Mock L, Kyu Hyoung L (2011) Enhancement of seebeck coefficient in Bi0.5Sb1.5Te3 with high-density tellurium nanoinclusions. Appl Phys Express 4(9):801

    Google Scholar 

  7. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602

    CAS  Article  Google Scholar 

  8. Hicks LD, Harman TC, Dresselhaus MS (1993) Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl Phys Lett 63(23):3230–3232

    CAS  Article  Google Scholar 

  9. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731

    CAS  Article  Google Scholar 

  10. Harman TC, Walsh MP, Laforge BE, Turner GW (2005) Nanostructured thermoelectric materials. J Electron Mater 34(5):L19–L22

    CAS  Article  Google Scholar 

  11. Faleev SV, Leonard FO (2008) Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys Rev B 77(21):214304

    Article  CAS  Google Scholar 

  12. LeBlanc S (2014) Thermoelectric generators: linking material properties and systems engineering for waste heat recovery applications. Sustain Mater Technol 1–2:26–35

    Google Scholar 

  13. Case ED (2012) Thermal fatigue and waste heat recovery via thermoelectrics. J Electron Mater 41(6):1811–1819

    CAS  Article  Google Scholar 

  14. Simard JM, Vasilevskiy D, Turenne S (2003) In Influence of composition and texture on the thermoelectric and mechanical properties of extruded (Bi1-xSbx)2(Te1-ySey)3 alloys. In: Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE Cat. No.03TH8726), 17–21 Aug. 2003; 2003; pp 13–18.

  15. Tiwary CS, Pandey P, Sarkar S, Das R, Samal S, Biswas K, Chattopadhyay K (1793) Five decades of research on the development of eutectic as engineering materials. Progress Mater Sci 123:100793

    Article  CAS  Google Scholar 

  16. Chanda B, Potnis G, Jana PP, Das J (2020) A review on nano-/ultrafine advanced eutectic alloys. J Alloys Compd 827:226

    Article  CAS  Google Scholar 

  17. Kurz W, F. D, (1984) Fundamentals of solidification. Scientific.Net

    Google Scholar 

  18. Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial J-P, Gogna P (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19(8):1043–1053

    CAS  Article  Google Scholar 

  19. Rowe DM, Shukla VS (1981) The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J Appl Phys 52(12):7421–7426

    CAS  Article  Google Scholar 

  20. Rowe DM, Shukla VS, Savvides N (1981) Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys. Nature 290(5809):765–766

    CAS  Article  Google Scholar 

  21. Chadwick GA (1963) Eutectic alloy solidification. Prog Mater Sci 12:99–182

    Article  Google Scholar 

  22. Tiwary CS, Kashyap S, Chattopadhyay K (2014) Development of alloys with high strength at elevated temperatures by tuning the bimodal microstructure in the Al–Cu–Ni eutectic system. Scripta Mater 93:20–23

    CAS  Article  Google Scholar 

  23. Cantor B, May GJ, Chadwick GA (1973) The tensile fracture behaviour of the aligned Al-Al3Ni and Al-CuAl2 eutectics at various temperatures. J Mater Sci 8(6):830–838

    CAS  Article  Google Scholar 

  24. Cantor B, Chadwick GA (1974) The growth crystallography of unidirectionally solidified Al-Al3Ni and Al-Al2Cu eutectics. J Cryst Growth 23(1):12–20

    CAS  Article  Google Scholar 

  25. Askeland DRP, P. P, (2003) The science and engineering of materials, 4th edn. Thomson, Pacific Grove

    Google Scholar 

  26. Elliott R (1983) Eutectic Solidification Processing Crystalline and Glassy Alloys. Butterworths & Co, London

    Google Scholar 

  27. Callaway J, von Baeyer HC (1960) Effect of point imperfections on lattice thermal conductivity. Phys Rev 120(4):1149–1154

    CAS  Article  Google Scholar 

  28. Abeles B (1963) Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev 131(5):1906–1911

    Article  Google Scholar 

  29. Chen L, Liu R, Shi X (2021) Chapter 2—strategies to optimize thermoelectric performance. In: Chen L, Liu R, Shi X (eds) Thermoelectric materials and devices. Elsevier, pp 19–50

    Chapter  Google Scholar 

  30. Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51(4):459–539

    CAS  Article  Google Scholar 

  31. Vaqueiro P, Powell AV (2010) Recent developments in nanostructured materials for high-performance thermoelectrics. J Mater Chem 20(43):9577–9584

    CAS  Article  Google Scholar 

  32. Mukherjee S, Femi OE, Chetty R, Chattopadhyay K, Suwas S, Mallik RC (2018) Microstructure and thermoelectric properties of Cu2Te-Sb2Te3 pseudo-binary system. Appl Surf Sci 449:805–814

    CAS  Article  Google Scholar 

  33. Wu HJ, Foo WJ, Chen S-W, Jeffrey G (2012) Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials. Appl Phys Lett 101(2):023107

    Article  CAS  Google Scholar 

  34. Liebmann WK, Miller EA (1963) Preparation phase-boundary energies, and thermoelectric properties of InSb-Sb Eutectic alloys with ordered microstructures. J Appl Phys 34(9):2653–2659

    CAS  Article  Google Scholar 

  35. Yang B, Li S, Li X, Feng S, Liu Z, Zhong H (2018) Microstrucutre and thermoelectric properties of rapidly prepared Sn1−xMnxTe alloys. J Mater Sci: Mater Electron 29(22):18949–18956

    CAS  Google Scholar 

  36. Ikeda T, Haile SM, Ravi VA, Azizgolshani H, Gascoin F, Snyder GJ (2007) Solidification processing of alloys in the pseudo-binary PbTe-Sb2Te3 system. Acta Mater 55(4):1227–1239

    CAS  Article  Google Scholar 

  37. Femi OE, Elangovan H, Mukherjee S, Tripathi S, Chattopadhyay K (2021) Thermoelectric properties of BiSbTe-type alloys prepared by chill-casting and cryo-milling. Mater Chem Phys 260:124116

    CAS  Article  Google Scholar 

  38. Bhardwaj A, Misra DK (2014) Improving the thermoelectric performance of TiNiSn half-Heusler via incorporating submicron lamellae eutectic phase of Ti70.5Fe29.5: a new strategy for enhancing the power factor and reducing the thermal conductivity. J Mater Chem A 2(48):209880–220989

    Article  Google Scholar 

  39. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H, Li T (2014) A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci Rep 4(1):6200

    CAS  Article  Google Scholar 

  40. Mikami M, Guilmeau E, Funahashi R, Chong K, Chateigner D (2005) Enhancement of electrical properties of the thermoelectric compound Ca3Co4O9 through use of large-grained powder. J Mater Res 20(9):2491–2497

    CAS  Article  Google Scholar 

  41. Ben-Yehuda O, Shuker R, Gelbstein Y, Dashevsky Z, Dariel MP (2007) Highly textured Bi2Te3-based materials for thermoelectric energy conversion. J Appl Phys 101(11):113707

    Article  CAS  Google Scholar 

  42. Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit. Science 303(5659):818–821

    CAS  Article  Google Scholar 

  43. Cao YQ, Zhao XB, Zhu TJ, Zhang XB, Tu JP (2008) Syntheses and thermoelectric properties of Bi2Te3-Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl Phys Lett 92(14):143106

    Article  CAS  Google Scholar 

  44. Liu D, Dreβler C, Seyring M, Teichert S, Rettenmayr M (2018) Reduced thermal conductivity of Bi-In-Te thermoelectric alloys in a eutectic lamellar structure. J Alloy Compd 748:730–736

    CAS  Article  Google Scholar 

  45. Xu Y, Yamazaki M, Villars P (2011) Inorganic materials database for exploring the nature of material. Jpn J Appl Phys 50(11):11RH02

    Article  Google Scholar 

  46. Luo Y, Yang J, Jiang Q, Li W, Fu L, Xiao Y, Zhang D, Zhou Z, Cheng Y (2016) Effect of cooling rate on the thermoelectric and mechanical performance of Bi0.5Sb1.5Te3 prepared under a high magnetic field. Intermetallics 72:62–68

    CAS  Article  Google Scholar 

  47. Olu FE, Hong S-J, Chattopadhyay K (2020) Mechanical and thermoelectric properties of eutectic composite (Bi, Sb)2Te3/Te thermoelectric material. Trans Indian Inst Metals 73:1147–1155

    CAS  Article  Google Scholar 

  48. Xiao Y, Yang J, Li G, Liu M, Fu L, Luo Y, Li W, Peng J (2014) Enhanced thermoelectric and mechanical performance of polycrystalline p-type Bi0.5Sb1.5Te3 by a traditional physical metallurgical strategy. Intermetallics 50:20–27

    CAS  Article  Google Scholar 

  49. Femi OE, Akkiraju K, Murthy BS, Ravishankar N, Chattopadhyay K (2016) Effect of processing route on the bipolar contribution to the thermoelectric properties of n-type eutectic Bi22.5Sb7.5Te70 alloy. J Alloys Compd 682:791–798

    CAS  Article  Google Scholar 

  50. Luo Y, Yang J, Jiang Q, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, He X (2017) Investigation on the microstructure and thermoelectric performance of magnetic ions doped Bi0.5Sb1.5Te3 solidified under a magnetostatic field. Acta Mater 127:185–191

    CAS  Article  Google Scholar 

  51. Gao N, Zhu B, Wang X-Y, Yu Y, Zu F-Q (2018) Simultaneous optimization of Seebeck, electrical and thermal conductivity in free-solidified Bi0.4Sb1.6Te3 alloy via liquid-state manipulation. J Mater Sc 53(12):9107–9116

    CAS  Article  Google Scholar 

  52. Yu Y, Zhu B, Wu Z, Huang Z-Y, Wang X-Y, Zu F-Q (2015) Enhancing the thermoelectric performance of free solidified p-type Bi0.5Sb1.5Te3 alloy by manipulating its parent liquid state. Intermetallics 66:40–47

    CAS  Article  Google Scholar 

  53. Femi OE, Ravishankar N, Chattopadhyay K (2016) Microstructure evolution and thermoelectric properties of Te-poor and Te-rich (Bi, Sb)2Te3 prepared via solidification. J Mater Sci 51(15):7254–7265

    CAS  Article  Google Scholar 

  54. Kohri H, Chen L, Nishida IA, Hirai T (1998) In effect of microstructure and composition on thermoelectric properties of Te-rich Sb2Te3. In: XVII international conference on thermoelectrics: proceedings ICT98 (Cat. No. 98TH8365), pp 178–181. https://doi.org/10.1109/ICT.1998.740347

  55. Thu Huong N, Setou Y, Nakamoto G, Kurisu M, Kajihara T, Mizukami H, Sano S (2004) High thermoelectric performance at low temperature of Bi1.8Sb0.2Te3.0 grown by the gradient freeze method from Te-rich melt. J Alloys Compd 368(1):44–50

    Article  CAS  Google Scholar 

  56. Miller GR, Li C-Y (1965) Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J Phys Chem Solids 26(1):173–177

    CAS  Article  Google Scholar 

  57. Chen ZG, Han G, Yang L, Cheng L, Zou J (2012) Nanostructured thermoelectric materials: Current research and future challenge. Progress Nat Sci Mater Int 22(6):535–549

    Article  Google Scholar 

  58. Drabble JR, Goodman CHL (1958) Chemical bonding in bismuth telluride. J Phys Chem Solids 5(1–2):142–144

    CAS  Article  Google Scholar 

  59. Zheng Y, Zhang Q, Su X, Xie H, Shu S, Chen T, Tan G, Yan Y, Tang X, Uher C, Snyder GJ (2015) Mechanically robust BiSbTe alloys with superior thermoelectric performance: a case study of stable hierarchical nanostructured thermoelectric materials. Adv Energy Mater 5(5):1401391

    Article  CAS  Google Scholar 

  60. Custódio MCC, Hernandes AC (1999) Tellurium-rich phase in n-type bismuth telluride crystals grown by the Bridgman technique. J Cryst Growth 205(4):523–530

    Article  Google Scholar 

  61. Yamashita O, Tomiyoshi S, Makita K (2003) Bismuth telluride compounds with high thermoelectric figures of merit. J Appl Phys 93(1):368–374

    CAS  Article  Google Scholar 

  62. Wu Y, Yu Y, Zhang Q, Zhu T, Zhai R, Zhao X (2019) Liquid-Phase Hot Deformation to Enhance Thermoelectric Performance of n-type Bismuth-Telluride-Based Solid Solutions. Adv Sci 6(21):1901702

    CAS  Article  Google Scholar 

  63. Zhu B, Yu Y, Wang X-Y, Zu F-Q, Huang Z-Y (2017) Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 semiconductor by manipulating its parent liquid state. JMateri Sci 52(14):8526–8537

    CAS  Article  Google Scholar 

  64. Wang Z-L, Akao T, Onda T, Chen Z-C (2016) Formation of Te-rich phase and its effect on microstructure and thermoelectric properties of hot-extruded Bi–Te–Se bulk materials. J Alloy Compd 684:516–523

    CAS  Article  Google Scholar 

  65. Yu Y, Wu Z, Cojocaru-Mirédin O, Zhu B, Wang X-Y, Gao N, Huang Z-Y, Zu F-Q (2017) Dependence of solidification for Bi2Te3−xSex alloys on their liquid states. Sci Rep 7(1):2463

    Article  CAS  Google Scholar 

  66. Lange PW (1939) Ein Vergleich zwischen Bi 2 Te 3 und Bi 2 Te 2 S. Naturwissenschaften 27:133

    CAS  Article  Google Scholar 

  67. Nakajima S (1963) The crystal structure of Bi2Te3−xSex. J Phys Chem Solids 24(3):479–485

    CAS  Article  Google Scholar 

  68. Delaviginette P, Amelinckx S (1960) Dislocation nets in bismuth and antimony tellurides. Philos Mag 5(55):729–744

    Article  Google Scholar 

  69. Cheng Y, Yang J, Jiang Q, He D, He J, Luo Y, Zhang D, Zhou Z, Ren Y, Xin J (2017) New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance. J Mater Chem A 5(10):5163–5170

    CAS  Article  Google Scholar 

  70. Norizan MN, Ohishi Y, Kurosaki K, Muta H (2019) Fabrication and thermoelectric property of Bi0.88Sb0.12/InSb eutectic alloy by melt spinning and spark plasma sintering. Mater Trans 60(6):1072–1077

    CAS  Article  Google Scholar 

  71. Kanatzidis MG (2010) Nanostructured thermoelectrics: the new paradigm? Chem Mater 22(3):648–659

    CAS  Article  Google Scholar 

  72. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114

    CAS  Article  Google Scholar 

  73. Lensch-Falk JL, Sugar JD, Hekmaty MA, Medlin DL (2010) Morphological evolution of Ag2Te precipitates in thermoelectric PbTe. J Alloy Compd 504(1):37–44

    CAS  Article  Google Scholar 

  74. Ikeda T, Toussaint MB, Bergum K, Iwanaga S, Jeffrey Snyder G (2011) Solubility and formation of ternary Widmanstätten precipitates in PbTe in the pseudo-binary PbTe–Bi2Te3 system. J Mater Sci 46(11):3846–3854

    CAS  Article  Google Scholar 

  75. Wu H-J, Foo W-J, Gierlotka W, Chen S-W, Snyder GJ (2013) The microstructure, liquidus projection and thermodynamic modeling of thermoelectric Ag–Pb–Te system. Mater Chem Phys 141(2):758–767

    CAS  Article  Google Scholar 

  76. Wu HJ, Chen SW, Ikeda T, Snyder GJ (2012) Formation of ordered nano-wire microstructures in thermoelectric Pb–Ag–Sb–Te. Acta Mater 60(3):1129–1138

    CAS  Article  Google Scholar 

  77. May AF, Toberer ES, Saramat A, Snyder GJ (2009) Characterization and analysis of thermoelectric transport in n-type Ba8Ga16-xGe30+x. Phys Rev B 80(12):125205

    Article  CAS  Google Scholar 

  78. Li JQ, Li LF, Song SH, Liu FS, Ao WQ (2013) High thermoelectric performance of GeTe–Ag8GeTe6 eutectic composites. J Alloy Compd 565:144–147

    CAS  Article  Google Scholar 

  79. Yang SH, Zhu TJ, Sun T, He J, Zhang SN, Zhao XB (2008) Nanostructures in high-performance (GeTe)x(AgSbTe2)100–x thermoelectric materials. Nanotechnology 19(24):245707

    CAS  Article  Google Scholar 

  80. Charoenphakdee A, Kurosaki K, Muta H, Uno M, Yamanaka S (2008) Reinvestigation of the thermoelectric properties of Ag8GeTe6. Phys Status Solidi (RRL) Rapid Res Lett 2(2):65–67

    CAS  Article  Google Scholar 

  81. Gelbstein Y, Dado B, Ben-Yehuda O, Sadia Y, Dashevsky Z, Dariel MP (2010) High thermoelectric figure of merit and nanostructuring in bulk p-type Gex(SnyPb1−y)1−xTe alloys following a spinodal decomposition reaction. Chem Mater 22(3):1054–1058

    CAS  Article  Google Scholar 

  82. Levin EM, Cook BA, Harringa JL, Budko SL, Venkatasubramanian R, Schmidt-Rohr K (2011) Analysis of Ce- and Yb-doped TAGS-85 materials with enhanced thermoelectric figure of merit. Adv Funct Mater 21(3):441–447

    CAS  Article  Google Scholar 

  83. Sootsman JR, He J, Dravid VP, Li C-P, Uher C, Kanatzidis MG (2009) High thermoelectric figure of merit and improved mechanical properties in melt quenched PbTe–Ge and PbTe–Ge1−xSix eutectic and hypereutectic composites. J Appl Phys 105(8):083718

    Article  CAS  Google Scholar 

  84. Ren F, Case ED, Sootsman JR, Kanatzidis MG, Kong H, Uher C, Lara-Curzio E, Trejo RM (2008) The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy. Acta Mater 56(20):5954–5963

    CAS  Article  Google Scholar 

  85. Gelbstein Y, Dashevsky Z, Dariel MP (2008) The search for mechanically stable PbTe based thermoelectric materials. J Appl Phys 104(3):033702

    Article  CAS  Google Scholar 

  86. Liu J, Wang X, Peng LJI (2013) Effect of annealing on thermoelectric properties of eutectic PbTe Sb2Te3 composite with self-assembled lamellar structure. Intermetallics 41:63–69

    Article  CAS  Google Scholar 

  87. Bergman DJ, Fel LG (1999) Enhancement of thermoelectric power factor in composite thermoelectrics. J Appl Phys 85(12):8205–8216

    CAS  Article  Google Scholar 

  88. Tian YL, Kraft RW (1987) Mechanisms of pearlite spheroidization. Metall Trans A 18(8):1403–1414

    Article  Google Scholar 

  89. Rowe DME (1995) CRC handbook of thermoelectrics, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  90. Pei Y, Wang H, Gibbs ZM, LaLonde AD, Snyder GJ (2012) Thermopower enhancement in Pb1−xMnxTe alloys and its effect on thermoelectric efficiency. NPG Asia Mater 4(9):e28–e28

    Article  CAS  Google Scholar 

  91. Zhang Y, Wu L, Zhang J, Xing J, Luo J (2016) Eutectic microstructures and thermoelectric properties of MnTe-rich precipitates hardened PbTe. Acta Mater 111:202–209

    CAS  Article  Google Scholar 

  92. Kuliev R, Krestovnikov A, Glazov V (1969) Phase equilibria and intermolecular interactions in systems formed by copper and antimony chalcogenides. Russ J Phys Chem 43:1721

    Google Scholar 

  93. Da Silva JLF, Wei S-H, Zhou J, Wu X (2007) Stability and electronic structures of CuxTe. Appl Phys Lett 91(9):091902

    Article  CAS  Google Scholar 

  94. He Y, Zhang T, Shi X, Wei S-H, Chen L (2015) High thermoelectric performance in copper telluride. NPG Asia Mater 7(8):e210–e210

    CAS  Article  Google Scholar 

  95. Mukherjee S, Aramanda SK, Legese SS, Riss A, Rogl G, Femi OE, Bauer E, Rogl PF, Chattopadhyay K (2021) Anisotropy of microstructure and its influence on thermoelectricity: the case of Cu2Te–Sb2Te3 eutectic. ACS Appl Energy Mater 4(10):11867–11877

    CAS  Article  Google Scholar 

  96. Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder GJ (2012) Copper ion liquid-like thermoelectrics. Nat Mater 11(5):422–425

    Article  CAS  Google Scholar 

  97. Page A, Poudeu PFP, Uher C (2016) A first-principles approach to half-Heusler thermoelectrics: accelerated prediction and understanding of material properties. J Materiom 2(2):104–113

    Article  Google Scholar 

  98. Rogl G, Grytsiv A, Gürth M, Tavassoli A, Ebner C, Wünschek A, Puchegger S, Soprunyuk V, Schranz W, Bauer E, Müller H, Zehetbauer M, Rogl P (2016) Mechanical properties of half-Heusler alloys. Acta Mater 107:178–195

    CAS  Article  Google Scholar 

  99. Chen S, Ren Z (2013) Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater Today 16(10):387–395

    CAS  Article  Google Scholar 

  100. Zhu H, Mao J, Li Y, Sun J, Wang Y, Zhu Q, Li G, Song Q, Zhou J, Fu Y, He R, Tong T, Liu Z, Ren W, You L, Wang Z, Luo J, Sotnikov A, Bao J, Nielsch K, Chen G, Singh DJ, Ren Z (2019) Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance. Nat Commun 10(1):270

    Article  CAS  Google Scholar 

  101. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93

    Article  CAS  Google Scholar 

  102. Lu Y, Dong Y, Jiang L, Wang T, Lu Y, Zhang Y (2015) A criterion for topological close-packed phase formation in high entropy alloys. Entropy 17:2355–2366

    CAS  Article  Google Scholar 

  103. Sathiaraj GD, Ahmed MZ, Bhattacharjee PP (2016) Microstructure and texture of heavily cold-rolled and annealed fcc equiatomic medium to high entropy alloys. J Alloy Compd 664:109–119

    CAS  Article  Google Scholar 

  104. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18(9):1758–1765

    CAS  Article  Google Scholar 

  105. Lucas MS, Wilks GB, Mauger L, Muñoz JA, Senkov ON, Michel E, Horwath J, Semiatin SL, Stone MB, Abernathy DL, Karapetrova E (2012) Absence of long-range chemical ordering in equimolar FeCoCrNi. Appl Phys Lett 100(25):251907

    Article  CAS  Google Scholar 

  106. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Zhijun W, Jie JC, Cao Z, Ruan HH, Lu Y (2014) A Promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 4:6200

    CAS  Article  Google Scholar 

  107. Han K, Jiang H, Huang T, Wei M (2020) Thermoelectric properties of CoCrFeNiNbx eutectic high entropy alloys. Curr Comput-Aided Drug Des 10(9):762

    CAS  Google Scholar 

  108. Jiang H, Jiang L, Qiao D, Lu Y, Wang T, Cao Z, Li T (2017) Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys. J Mater Sci Technol 33(7):712–717

    CAS  Article  Google Scholar 

  109. Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1(1):1–42

    Article  Google Scholar 

  110. Yang B, Li S, Li X, Wang Y, Zhong H, Feng S (2019) Microstructure and enhanced thermoelectric performance of Te–SnTe eutectic composites with self-assembled rod and lamellar morphology. Intermetallics 112:106499

    CAS  Article  Google Scholar 

  111. Yang B, Li S, Li X, Liu Z, Zhong H, Li X, Feng S (2021) Nanostructured Te-SnTe eutectic composites with enhanced thermoelectric performance. J Alloys Compd 860:158245

    CAS  Article  Google Scholar 

  112. Yang B, Li S, Li X, Liu Z, Zhong H, Li X, Songke F (2020) Nanostructured Te-SnTe eutectic composites with enhanced thermoelectric performance. J Alloys Compd 860:158245

    Article  CAS  Google Scholar 

  113. Hong M, Wang Y, Xu S, Shi X, Chen L, Zou J, Chen ZJNE (2019) Nanoscale pores plus precipitates rendering high-performance thermoelectric SnTe1-xSex with refined band structures. Nano Energy 60:1–7

    CAS  Article  Google Scholar 

  114. Cao T, Shang J, Zhao J, Cheng C, Wang R, Wang H (2016) The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys. Mater Lett 164(C):344–347

    CAS  Article  Google Scholar 

  115. Zhao L-D, Zhang B-P, Li J-F, Zhou M, Liu W-S, Liu J (2008) Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J Alloy Compd 455(1):259–264

    CAS  Article  Google Scholar 

  116. Kauzlarich SM, Brown SR, Jeffrey Snyder G (2007) Zintl phases for thermoelectric devices. Dalton Trans 21:2099–2107

    Article  CAS  Google Scholar 

  117. Souda D, Shimizu K, Ohishi Y, Muta H, Yagi T, Kurosaki K (2020) High thermoelectric power factor of Si–Mg2Si nanocomposite ribbons synthesized by melt spinning. ACS Appl Energy Mater 3(2):1962–1968

    CAS  Article  Google Scholar 

  118. Levin EM, Hanus R, Cui J, Xing Q, Riedemann T, Lograsso TA, Schmidt-Rohr K (2015) Phase analysis and determination of local charge carrier concentration in eutectic Mg2Si–Si alloys. Mater Chem Phys 158:1–9

    CAS  Article  Google Scholar 

  119. Chen HY, Savvides N, Dasgupta T, Stiewe C, Mueller E (2010) Electronic and thermal transport properties of Mg2Sn crystals containing finely dispersed eutectic structures. Phys Status Solidi A 207(11):2523–2531

    CAS  Article  Google Scholar 

  120. Chen HY, Savvides N (2010) Eutectic microstructure and thermoelectric properties of Mg2Sn. J Electron Mater 39(9):1792–1797

    CAS  Article  Google Scholar 

  121. Chen HY, Savvides N (2009) Microstructure and thermoelectric properties of n- and p-type doped Mg2Sn compounds prepared by the modified Bridgman method. J Electron Mater 38(7):1056–1060

    CAS  Article  Google Scholar 

  122. Hauser JJ (1975) Conduction in amorphous Mg2X compounds (X= Ge and Sn). Phys Rev B 11(10):3860–3866

    CAS  Article  Google Scholar 

  123. LaBotz RJ, Mason DR (1963) The thermal conductivities of Mg2Si and Mg2Ge. J Electrochem Soc 110(2):121

    CAS  Article  Google Scholar 

Download references

Acknowledgements

SSL and OEF would like to appreciate the support from the Exist-Project at JiT Centre of Excellence funded by kFW of Germany. Likewise, OEF appreciates Professor Kamanio Chattopadhyay, Dr. Shriparna Mukherjee, and Ms. Tigist Waktole Berkesa for all the valuable discussion and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Femi Emmanuel Olu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Legese, S.S., Olu, F.E. A Review of Lamellar Eutectic Morphologies for Enhancing Thermoelectric and Mechanical Performance of Thermoelectric Materials. J Indian Inst Sci 102, 237–279 (2022). https://doi.org/10.1007/s41745-021-00273-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00273-x

Keywords

  • Thermoelectric material
  • Mechanical properties
  • Eutectic-lamellar
  • Thermal conductivity
  • Chalcogenide
  • Half-Heusler alloy
  • High-entropy alloy