Skip to main content

Recycling of Li-Ion and Lead Acid Batteries: A Review

Abstract

The rapid shift toward producing and using clean energy to replace fossil fuels has increased the need for batteries. Batteries have become an integral part in energy storage applications due to their increased demand in electric vehicles, consumer electronics, and grid scale storage. As the demand and usage of batteries increase, it is desired to study their recyclability to reduce the environmental impact. Among the available batteries, lithium ion (Li-ion) and lead acid (LA) batteries have the dominant market share. This review paper focuses on the need to adopt a circular economy with effective recycling of batteries. Furthermore, the state-of-the-art processes to recycle batteries and challenges faced by companies to recycle Li-ion and LA batteries are discussed. It is found that the recyclability of Li-ion batteries is < 1% and the process is still not efficient to recover Li for reuse in battery applications. LA batteries are now recycled with more than 99% efficiency in the USA and EU because of factors such as separation at the source, availability of methods to economically recover materials and regulations supporting recycling. Novel recycling techniques are being developed for effective recycling of Li-ion batteries.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

References

  1. Michael T, Pablo R, Harold A, Sonia A-Z (2020) Renewable power generation cost in 2019. International Renewable Energy Agency (IRENA), Abu Dhabi

  2. Francis M (2021) Renewables became the second-most prevalent U.S. electricity source in 2020. https://www.eia.gov/todayinenergy/detail.php?id=48896

  3. Javed MS, Ma T, Jurasz J, Amin MY (2020) Solar and wind power generation systems with pumped hydro storage: review and future perspectives. Renew Energy 148:176–192

    Article  Google Scholar 

  4. Raturi AK (2019) Renewables 2019 global status report

  5. BloombergNEF (2021) Energy transition investment hit $500 Billion in 2020—For First Time. https://about.bnef.com/blog/energy-transition-investment-hit-500-billion-in-2020-for-first-time/

  6. Barbour E, Wilson IAG, Radcliffe J, Ding Y, Li Y (2016) A review of pumped hydro energy storage development in significant international electricity markets. Renew Sustain Energy Rev 61:421–432

    Article  Google Scholar 

  7. IEA (2020) Global EV Outlook 2020. Paris

  8. Jhunjhunwala A, Kaur P, Mutagekar S (2018) Electric vehicles in india: a novel approach to scale electrification. IEEE Electrification Magazine 6(4):40–47

    Article  Google Scholar 

  9. Durmus YE, Zhang H, Baakes F, Desmaizieres G, Hayun H, Yang L, Kolek M, Küpers V, Janek J, Mandler D, Passerini S, Ein-Eli Y (2020) Side by side battery technologies with lithium-ion based batteries. Adv Energy Mater 10(24):2000089

    CAS  Article  Google Scholar 

  10. Newton GN, Johnson LR, Walsh DA, Hwang BJ, Han H (2021) Sustainability of battery technologies: today and tomorrow. ACS Sustain Chem Eng 9(19):6507–6509

    CAS  Article  Google Scholar 

  11. Grand View Research. Battery Market Size, Share & Trends Analysis Report By Product (Lead Acid, Li-ion, Nickel Metal Hydride, Ni-cd), By Application (Automotive, Industrial, Portable), By Region, And Segment Forecasts, 2020 - 2027. July 2020 [cited 2020 accessed 12 December 2020]; https://www.grandviewresearch.com/industry-analysis/battery-market

  12. Battery Council International EDR Group an EBP Company. Economic Contribution of the U.S. Lead Battery Industry. 2019, September [cited 2020 accessed 12 December 2020]; https://essentialenergyeveryday.com/wp-content/uploads/2019/10/Economic-Impact-of-Lead-Batteries-in-the-United-States-Sept-2019.pdf

  13. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451(7179):652–657

    CAS  Article  Google Scholar 

  14. Manthiram A (2017) An outlook on lithium ion battery technology. ACS Cent Sci 3(10):1063–1069

    CAS  Article  Google Scholar 

  15. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    CAS  Article  Google Scholar 

  16. Manthiram A (2020) A reflection on lithium-ion battery cathode chemistry. Nat Commun 11(1):1–9

    Article  Google Scholar 

  17. Sullivan JL, Gaines L (2012) Status of life cycle inventories for batteries. Energy Convers Manage 58:134–148

    CAS  Article  Google Scholar 

  18. Saw LH, Ye Y, Tay AAO (2016) Integration issues of lithium-ion battery into electric vehicles battery pack. J Clean Prod 113:1032–1045

    CAS  Article  Google Scholar 

  19. Allied Market Research. Lithium-ion Battery Market to Reach $129.3 billion by 2027: At CAGR 18.0%. 2020 [cited 2020 accessed 12 December 2020]; https://www.globenewswire.com/news-release/2020/06/02/2042389/0/en/Lithium-ion-Battery-Market-to-Reach-129-3-billion-by-2027-At-CAGR-18-0.html

  20. Hua AC, Syue BZ (2010) Charge and discharge characteristics of lead-acid battery and LiFePO4 battery. in The 2010 International Power Electronics Conference—ECCE ASIA. Sapporo

  21. Parvini Y, Vahidi A (2015) Maximizing charging efficiency of lithium-ion and lead-acid batteries using optimal control theory. in 2015 American Control Conference (ACC). Chicago

  22. Dhundhara S, Verma YP, Williams A (2018) Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems. Energy Convers Manage 177:122–142

    CAS  Article  Google Scholar 

  23. Lujano-Rojas JM, Dufo-López R, Atencio-Guerra JL, Rodrigues EMG, Bernal-Agustín JL, Catalão JPS (2016) Operating conditions of lead-acid batteries in the optimization of hybrid energy systems and microgrids. Appl Energy 179:590–600

    CAS  Article  Google Scholar 

  24. Daoud A, Abou El-khair MT, Shenouda AY, Fairouz F, Mohamed E, AbdelAziz ME, Yanamandra K, Gupta N (2021) Novel Pb alloys based composite foams containing hybrid pores produced by liquid metallurgy for lightweight batteries. Int J Lightweight Mater Manufacture

  25. Global Battery Alliance. A vision for a sustainable battery value chain by 2030 unlocking the full potential to power the sustainable development and climate change mitigation. 2019 [cited 2020 accessed 12 December 2020]; http://www3.weforum.org/docs/WEF_A_Vision_for_a_Sustainable_Battery_Value_Chain_in_2030_Report.pdf

  26. Manthiram A (2020) A reflection on lithium-ion battery cathode chemistry. Nat Commun 11(1):1550

    CAS  Article  Google Scholar 

  27. Ding Y, Cano ZP, Yu A, Lu J, Chen Z (2019) Automotive li-ion batteries: current status and future perspectives. Electrochemical Energy Rev 2(1):1–28

    CAS  Article  Google Scholar 

  28. Karimov V (2021) New tests prove: LFP lithium batteries live longer than NMC. 2021; https://www.onecharge.biz/blog/lfp-lithium-batteries-live-longer-than-nmc/

  29. Preger Y, Barkholtz HM, Fresquez A, Campbell DL, Juba BW, Romàn-Kustas J, Ferreira SR, Chalamala B (2020) Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J Electrochemical Soc 167(12):120532

    CAS  Article  Google Scholar 

  30. Alamalhodaei A (2021) What Tesla’s bet on iron-based batteries means for manufacturers. https://techcrunch.com/2021/07/28/what-teslas-bet-on-iron-based-batteries-means-for-manufacturers/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAC_VyawOUFX-79-iatdN3aJ9GFqZinNZgyWfm2q14TRRY-cZyPIfhu4rjbf7I2Z6ZSqL8Kp1mwrNsGiYcEesm8yUXuEkuVW9ZiR9R_i3k1fETzETFm8A4xDDghGBNTqE0jh7vo4Ydb1CIljSud_34t7aVIDH8sy6Y1rp63_bxjVI

  31. PowerTech Advanced Energy Storage Systems. Lithium ion battery advantages. 2020 [cited 2020 accessed 12 December 2020]; https://www.powertechsystems.eu/home/tech-corner/lithium-ion-battery-advantages/

  32. Svarc J (2019) Lead acid vs. lithium ion batteries. [cited 2020 accessed 12 December 2020]; https://www.cleanenergyreviews.info/blog/simpliphi-pylontech-narada-bae-lead-acid-battery

  33. Blyler J (2020) Lead-acid vs lithium ion batteries: which will win? [cited 2020 accessed 12 December 2020]; Available from: https://www.designnews.com/electronics/lead-acid-vs-lithium-ion-batteries-which-will-win

  34. Uri Tech Times. Lead-Acid vs Lithium-Ion Batteries: Which is More Harmful to the Environment. 2020 [cited 2020 accessed 12 December 2020]; Available from: https://www.techtimes.com/articles/246965/20200120/lead-acid-and-lithium-ion-batteries-effects-to-the-environment.htm

  35. Aghajani G, Shayanfar H, Shayeghi H (2015) Presenting a multi-objective generation scheduling model for pricing demand response rate in micro-grid energy management. Energy Convers Manage 106:308–321

    Article  Google Scholar 

  36. IRENA (2015) Battery Storage for Renewables: Market Status and Outlook. International Renewable Energy Agency

  37. Keshan H, Thornburg J, Ustun TS (2016) Comparison of lead-acid and lithium ion batteries for stationary storage in off-grid energy systems, in 4th IET Clean Energy and Technology Conference (CEAT 2016). Kuala Lumpur

  38. Podder S, Khan MZR (2016) Comparison of lead acid and Li-ion battery in solar home system of Bangladesh. in 5th International Conference on Informatics, Electronics and Vision (ICIEV). Dhaka

  39. Bernardes AM, Espinosa DCR, Tenório JAS (2004) Recycling of batteries: a review of current processes and technologies. J Power Sources 130(1):291–298

    CAS  Article  Google Scholar 

  40. Lund HF (2001) The McGraw-hill recycling handbook. Mech Eng-CIME 123(3):76–76

    Google Scholar 

  41. Commission E (2011) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Youth Opportunities Initiative

  42. Velázquez Martínez O, Van Den Boogaart KG, Lundström M, Santasalo-Aarnio A, Reuter M, Serna-Guerrero R (2019) Statistical entropy analysis as tool for circular economy: proof of concept by optimizing a lithium-ion battery waste sieving system. J Clean Prod 212:1568–1579

    Article  CAS  Google Scholar 

  43. Li Q, Xu C, Yang L, Pei K, Zhao Y, Liu X, Che R (2020) Pb/C composite with spherical Pb nanoparticles encapsulated in carbon microspheres as a high-performance anode for lithium-ion batteries. ACS Appl Energy Mater 3(8):7416–7426

    CAS  Article  Google Scholar 

  44. Zhang W, Yang J, Wu X, Hu Y, Yu W, Wang J, Dong J, Li M, Liang S, Hu J, Kumar RV (2016) A critical review on secondary lead recycling technology and its prospect. Renew Sustain Energy Rev 61:108–122

    CAS  Article  Google Scholar 

  45. USGS, Mineral commodity summaries 2021, in Mineral Commodity Summaries. 2021: Reston. 200

  46. Meshram P, Pandey BD (2019) Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries—a resource overview. Resour Policy 60:9–22

    Article  Google Scholar 

  47. Sullivan JL, Gaines L, Energy S (2010) A review of battery life-cycle analysis: state of knowledge and critical needs. United States

  48. SmithBucklin Statistics Group. National Recycling Rate Study. 2019; Available from: https://cdn.ymaws.com/batterycouncil.org/resource/resmgr/2020/BCI_482347-20_2019-Study.pdf

  49. Sun Z, Cao H, Zhang X, Lin X, Zheng W, Cao G, Sun Y, Zhang Y (2017) Spent lead-acid battery recycling in China—a review and sustainable analyses on mass flow of lead. Waste Manage 64:190–201

    CAS  Article  Google Scholar 

  50. Ferracin LC, Chácon-Sanhueza AE, Davoglio RA, Rocha LO, Caffeu DJ, Fontanetti AR, Rocha-Filho RC, Biaggio SR, Bocchi N (2002) Lead recovery from a typical Brazilian sludge of exhausted lead-acid batteries using an electrohydrometallurgical process. Hydrometallurgy 65(2–3):137–144

    CAS  Article  Google Scholar 

  51. Swain B (2017) Recovery and recycling of lithium: a review. Sep Purif Technol 172:388–403

    CAS  Article  Google Scholar 

  52. Asadi Dalini E, Karimi G, Zandevakili S, Goodarzi M (2020) A review on environmental, economic and hydrometallurgical processes of recycling spent lithium-ion batteries. Miner Process Extr Metall Rev 1–22

  53. Meng F, McNeice J, Zadeh SS, Ghahreman A (2021) Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Miner Process Extr Metall Rev 42(2):123–141

    CAS  Article  Google Scholar 

  54. Meshram P, Pandey B (2019) Perspective of availability and sustainable recycling prospects of metals in rechargeable batteries–a resource overview. Resour Policy 60:9–22

    Article  Google Scholar 

  55. Krebs RE (2006) The history and use of our earth’s chemical elements: a reference guide. Greenwood Publishing Group

  56. Christie T, Brathwaite B (2008) Mineral commodity report 19-beryllium, gallium, lithium, magnesium, uranium and zirconium. Institute of Geological and Nuclear Sciences Ltd

  57. Guo H, Kuang G, Wang H, Yu H, Zhao X (2017) Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid. Minerals 7(11):205

    Article  CAS  Google Scholar 

  58. Meshram P, Pandey BD, Mankhand TR (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review. Hydrometallurgy 150:192–208

    CAS  Article  Google Scholar 

  59. Armand M, Axmann P, Bresser D, Copley M, Edström K, Ekberg C, Guyomard D, Lestriez B, Novák P, Petranikova M, Porcher W, Trabesinger S, Wohlfahrt-Mehrens M, Zhang H (2020) Lithium-ion batteries—current state of the art and anticipated developments. J Power Sources 479:228708

    CAS  Article  Google Scholar 

  60. Nishi Y (2001) The development of lithium ion secondary batteries. Chem Rec 1(5):406–413

    CAS  Article  Google Scholar 

  61. Velázquez-Martínez O, Valio J, Santasalo-Aarnio A, Reuter M, Serna-Guerrero R (2019) A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5(4):68

    Article  CAS  Google Scholar 

  62. Zhang Z, Ramadass P (2012) Lithium-ion batterylithium-ion batterysystems and technologylithium-ion batterytechnology. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York, New York, pp 6122–6149

    Chapter  Google Scholar 

  63. Sojka R, Qiaoyan P, Billmann L (2020) Comparative Study of Li-ion recycling processes. https://accurec.de/wp-content/uploads/2021/04/Accurec-Comparative-study.pdf

  64. Rogulski Z, Czerwiński A (2006) Used batteries collection and recycling in Poland. J Power Sources 159(1):454–458

    CAS  Article  Google Scholar 

  65. Dewulf J, Van der Vorst G, Denturck K, Van Langenhove H, Ghyoot W, Tytgat J, Vandeputte K (2010) Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour Conserv Recycl 54(4):229–234

    Article  Google Scholar 

  66. Zhou H, Su M, Lee P-H, Shih K (2017) Synthesis of submicron lead oxide particles from the simulated spent lead paste for battery anodes. J Alloy Compd 690:101–107

    CAS  Article  Google Scholar 

  67. Elwert T, Römer F, Schneider K, Hua Q, Buchert M (2018) Recycling of batteries from electric vehicles. In: Pistoia G, Liaw B (eds) Behaviour of lithium-ion batteries in electric vehicles: battery health, performance, safety, and cost. Springer International Publishing, Cham, pp 289–321

    Chapter  Google Scholar 

  68. Sloop SE (2008) Recycling advanced batteries. in 2008 IEEE International symposium on electronics and the environment

  69. Varshney K, Varshney PK, Gautam K, Tanwar M, Chaudhary M (2020) Current trends and future perspectives in the recycling of spent lead acid batteries in India. Materials Today: Proceedings 26:592–602

    CAS  Google Scholar 

  70. Kala S, Mishra A (2021) Battery recycling opportunity and challenges in India. Materials Today: Proceedings 46:1543–1556

    CAS  Google Scholar 

  71. Arambarri J, Hayden J, Elkurdy M, Meyers B, Abu Hamatteh ZS, Abbassi B, Omar W (2019) Lithium ion car batteries: present analysis and future predictions. Environ Eng Res 24(4):699–710

    Article  Google Scholar 

  72. Lyakov NK, Atanasova DA, Vassilev VS, Haralampiev GA (2007) Desulphurization of damped battery paste by sodium carbonate and sodium hydroxide. J Power Sources 171(2):960–965

    CAS  Article  Google Scholar 

  73. Liu K, Yang J, Liang S, Hou H, Chen Y, Wang J, Liu B, Xiao K, Hu J, Wang J (2018) An emission-free vacuum chlorinating process for simultaneous sulfur fixation and lead recovery from spent lead-acid batteries. Environ Sci Technol 52(4):2235–2241

    CAS  Article  Google Scholar 

  74. Li M, Yang J, Liang S, Hou H, Hu J, Liu B, Kumar RV (2019) Review on clean recovery of discarded/spent lead-acid battery and trends of recycled products. J Power Sources 436:226853

    CAS  Article  Google Scholar 

  75. Georgi-Maschler T, Friedrich B, Weyhe R, Heegn H, Rutz M (2012) Development of a recycling process for Li-ion batteries. J Power Sources 207:173–182

    CAS  Article  Google Scholar 

  76. Dai Q, Spangenberger J, Ahmed S, Gaines L, Kelly JC, Wang M (2019) Everbatt: a closed-loop battery recycling cost and environmental impacts model. Argonne National Lab.(ANL), Argonne

  77. Lv W, Wang Z, Cao H, Sun Y, Zhang Y, Sun Z (2018) A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain Chem Eng 6(2):1504–1521

    CAS  Article  Google Scholar 

  78. Singh N, Li JH (2014) Environmental impacts of lead ore mining and smelting. Adv Mater Res 878:338–347

    Article  CAS  Google Scholar 

  79. Ferreira DA, Prados LMZ, Majuste D, Mansur MB (2009) Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. J Power Sources 187(1):238–246

    CAS  Article  Google Scholar 

  80. Yun J-Y, Park D, Jung S-S, Wang J-P (2017) Fabrication of nanosized cobalt powder from Cobalt(II) hydroxide of spent lithium ion battery. Appl Surf Sci 415:80–84

    CAS  Article  Google Scholar 

  81. Liu P (2018) Recycling waste batteries: recovery of valuable resources or reutilization as functional materials. ACS Sustain Chem Eng 6(9):11176–11185

    CAS  Article  Google Scholar 

  82. Shin SM, Kim NH, Sohn JS, Yang DH, Kim YH (2005) Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79(3):172–181

    CAS  Article  Google Scholar 

  83. Zeng X, Li J, Singh N (2014) Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol 44(10):1129–1165

    CAS  Article  Google Scholar 

  84. Xu P, Tan DHS, Chen Z (2021) Emerging trends in sustainable battery chemistries. Trends Chem 3(8):620–630

    CAS  Article  Google Scholar 

  85. Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24(1):58–68

    CAS  Article  Google Scholar 

  86. Macaskie L, Mikheenko I, Yong P, Deplanche K, Murray A, Paterson-Beedle M, Coker V, Pearce C, Cutting R, Pattrick R (2010) Today’s wastes, tomorrow’s materials for environmental protection. Hydrometallurgy 104(3–4):483–487

    CAS  Article  Google Scholar 

  87. Mishra D, Kim D-J, Ralph D, Ahn J-G, Rhee Y-H (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage 28(2):333–338

    CAS  Article  Google Scholar 

  88. Boxall NJ, King S, Cheng KY, Gumulya Y, Bruckard W, Kaksonen AH (2018) Urban mining of lithium-ion batteries in Australia: current state and future trends. Miner Eng 128:45–55

    CAS  Article  Google Scholar 

  89. Purnomo CW, Kesuma EP, Perdana I, Aziz M (2018) Lithium recovery from spent Li-ion batteries using coconut shell activated carbon. Waste Manage 79:454–461

    CAS  Article  Google Scholar 

  90. Chen M, Ma X, Chen B, Arsenault R, Karlson P, Simon N, Wang Y (2019) Recycling end-of-life electric vehicle lithium-ion batteries. Joule 3(11):2622–2646

    CAS  Article  Google Scholar 

  91. Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575(7781):75–86

    CAS  Article  Google Scholar 

  92. Liu C, Lin J, Cao H, Zhang Y, Sun Z (2019) Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review. J Clean Prod 228:801–813

    CAS  Article  Google Scholar 

  93. Zhang J, Chen C, Zhang X, Liu S (2016) Study on the environmental risk assessment of lead-acid batteries. Procedia Environ Sci 31:873–879

    Article  CAS  Google Scholar 

  94. Garche J, Moseley PT, Karden E (2015) 5—Lead–acid batteries for hybrid electric vehicles and battery electric vehicles. In: Scrosati B, Garche J, Tillmetz W (eds) Advances in battery technologies for electric vehicles. Woodhead Publishing, pp 75–101

    Chapter  Google Scholar 

  95. May GJ, Davidson A, Monahov B (2018) Lead batteries for utility energy storage: a review. J Energy Storage 15:145–157

    Article  Google Scholar 

  96. Velazquez O, Valio J, Santasalo-Aarnio A, Reuter M, Serna R (2019) A critical review of lithium-ion battery recycling processes from a circular economy perspective. Batteries 5:68

    Article  CAS  Google Scholar 

  97. Gratz E, Sa Q, Apelian D, Wang Y (2014) A closed loop process for recycling spent lithium ion batteries. J Power Sources 262:255–262

    CAS  Article  Google Scholar 

  98. Diekmann J, Hanisch C, Loellhoeffel T, Schälicke G, Kwade A (2016) Ecologically friendly recycling of lithium-ion batteries-the lithorec process. ECS Trans 73(1):1–9

    CAS  Article  Google Scholar 

  99. Tran T, Luong VT (2015) Lithium production processes. Lithium process chemistry. Elsevier, pp 81–124

    Chapter  Google Scholar 

  100. Sommerville R, Zhu P, Rajaeifar MA, Heidrich O, Goodship V, Kendrick E (2021) A qualitative assessment of lithium ion battery recycling processes. Resour, Conserv Recycl 165:105219

    Article  Google Scholar 

Download references

Acknowledgements

This article is derived from the Subject Data funded in whole or part by USAID and NAS through Subaward 2000010558. A part of this work is also based upon work supported by Science, Technology & Innovation Funding Authority (STDF) under grant (EG US project id 42692) to Dr. Atef Daoud in Egypt. Any opinions, findings, conclusions, or recommendations expressed in this article are those of the authors alone, and do not necessarily reflect the views of USAID, NAS or STDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Gupta.

Ethics declarations

Conflict of Interest

The authors identify no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yanamandra, K., Pinisetty, D., Daoud, A. et al. Recycling of Li-Ion and Lead Acid Batteries: A Review. J Indian Inst Sci 102, 281–295 (2022). https://doi.org/10.1007/s41745-021-00269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00269-7