Wrapp D, Wang N, Corbett KS et al (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. bioRxiv. https://doi.org/10.1101/2020.02.11.944462
Matta S, Chopra KK, Arora VK (2020) Morbidity and mortality trends of Covid 19 in top 10 countries. Indian J Tuberc 67:S167–S172. https://doi.org/10.1016/J.IJTB.2020.09.031
Article
Google Scholar
Mazumder A, Arora M, Bharadiya V et al (2020) SARS-CoV-2 epidemic in India: epidemiological features and in silico analysis of the effect of interventions. F1000Research 9:315. https://doi.org/10.12688/f1000research.23496.2
CAS
Article
Google Scholar
Li Q, Guan X, Wu P et al (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 382:1199–1207. https://doi.org/10.1056/nejmoa2001316
Article
Google Scholar
Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
CAS
Article
Google Scholar
Jiang S, Hillyer C, Du L (2020) Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol 41:355–359
CAS
Article
Google Scholar
Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
CAS
Article
Google Scholar
Lukassen S, Chua RL, Trefzer T et al (2020) SARS -CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J. https://doi.org/10.15252/embj.20105114
Article
Google Scholar
Astuti I, Ysrafil (2020) Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr 14:407–412. https://doi.org/10.1016/j.dsx.2020.04.020
Article
Google Scholar
Lechien JR, Chiesa-Estomba CM, de Siati DR et al (2020) Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 277:2251–2261. https://doi.org/10.1007/s00405-020-05965-1
Article
Google Scholar
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E et al (2020) Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis 34:101623
Article
Google Scholar
He X, Cheng X, Feng X et al (2021) Clinical symptom differences between mild and severe COVID-19 patients in China: a meta-analysis. Front Public Health 8:561264
Article
Google Scholar
Subbarao K, Mahanty S (2020) Respiratory virus infections: understanding COVID-19. Immunity 52:905–909
CAS
Article
Google Scholar
Vos LM, Bruyndonckx R, Zuithoff NPA et al (2020) Lower respiratory tract infection in the community: associations between viral aetiology and illness course. Clin Microbiol Infect 27:96. https://doi.org/10.1016/j.cmi.2020.03.023
CAS
Article
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
CAS
Article
Google Scholar
Krammer F (2020) SARS-CoV-2 vaccines in development. Nature 586(7830):516–527. https://doi.org/10.1038/s41586-020-2798-3
CAS
Article
Google Scholar
Kyriakidis NC, López-Cortés A, González EV et al (2021) SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines 6(1):1–17. https://doi.org/10.1038/s41541-021-00292-w
CAS
Article
Google Scholar
Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 109:102433
CAS
Article
Google Scholar
Coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19. Accessed 28 Apr 2021
Wang H, Li X, Li T et al (2020) The genetic sequence, origin, and diagnosis of SARS-CoV-2. Eur J Clin Microbiol Infect Dis 39:1629–1635
CAS
Article
Google Scholar
Zhang YZ, Holmes EC (2020) A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 181:223–227. https://doi.org/10.1016/j.cell.2020.03.035
CAS
Article
Google Scholar
Naqvi AAT, Fatima K, Mohammad T et al (2020) Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys Acta Mol Basis Dis 1866:165878
CAS
Article
Google Scholar
Hoffmann M, Hofmann-Winkler H, Pöhlmann S (2018) Priming time: how cellular proteases arm coronavirus spike proteins. Activation of viruses by host proteases. Springer International Publishing, Berlin, pp 71–98
Chapter
Google Scholar
To KK, Hung IF, Ip JD et al (2020) COVID-19 reinfection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis. https://doi.org/10.1093/CID/CIAA1275
Article
Google Scholar
Van Elslande J, Vermeersch P, Vandervoort K et al (2021) Symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection by a phylogenetically distinct strain. Clin Infect Dis 73:354–356. https://doi.org/10.1093/CID/CIAA1330
Article
Google Scholar
Prado-Vivar B, Becerra-Wong M, Guadalupe JJ et al (2021) A case of SARS-CoV-2 reinfection in Ecuador. Lancet Infect Dis 21:e142. https://doi.org/10.1016/S1473-3099(20)30910-5
CAS
Article
Google Scholar
Tirado SMC, Yoon KJ (2003) Antibody-dependent enhancement of virus infection and disease. Viral Immunol 16:69–86. https://doi.org/10.1089/088282403763635465
CAS
Article
Google Scholar
Tamura M, Webster RG, Ennis FA (1994) Subtype cross-reactive, infection-enhancing antibody responses to Influenza A viruses. J Virol 68:3499–3504. https://doi.org/10.1128/jvi.68.6.3499-3504.1994
CAS
Article
Google Scholar
Stettler K, Beltramello M, Espinosa DA et al (2016) Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353:823–826. https://doi.org/10.1126/science.aaf8505
CAS
Article
Google Scholar
Halstead SB, O’rourke EJ (1977) Dengue viruses and mononuclear phagocytes I. Infection enhancement by non-neutralizing antibody. J Exp Med 146:201–217. https://doi.org/10.1084/jem.146.1.201
CAS
Article
Google Scholar
Du L, He Y, Zhou Y et al (2009) The spike protein of SARS-CoV - A target for vaccine and therapeutic development. Nat Rev Microbiol 7:226–236
CAS
Article
Google Scholar
Burton DR (2002) Antibodies, viruses and vaccines. Nat Rev Immunol 2:706–713
CAS
Article
Google Scholar
Ryu W-S (2017) Virus life cycle. Molecular virology of human pathogenic viruses. Elsevier, Amsterdam, pp 31–45
Google Scholar
Mandel B (1978) Neutralization of animal viruses. Adv Virus Res 23:205–268. https://doi.org/10.1016/S0065-3527(08)60101-3
CAS
Article
Google Scholar
Klasse PJ (2014) Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv Biol 2014:1–24. https://doi.org/10.1155/2014/157895
CAS
Article
Google Scholar
Klasse PJ, Sattentau QJ (2002) Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 83:2091–2108
CAS
Article
Google Scholar
Daniels CA (1975) Mechanisms of viral neutralization. Viral immunology and immunopathology. Elsevier, Amsterdam, pp 79–97
Chapter
Google Scholar
Taylor A, Foo SS, Bruzzone R et al (2015) Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev 268:340–364
CAS
Article
Google Scholar
Kulkarni R (2020) Antibody-dependent enhancement of viral infections. Dynamics of immune activation in viral diseases. Springer, Singapore, pp 9–41
Chapter
Google Scholar
Porterfield JS (1986) Antibody-dependent enhancement of viral infectivity. Adv Virus Res 31:335–355. https://doi.org/10.1016/S0065-3527(08)60268-7
CAS
Article
Google Scholar
Felsenstein S, Hedrich CM (2020) COVID-19 in children and young people. Lancet Rheumatol 2:e514–e516
Article
Google Scholar
Wen J, Cheng Y, Ling R et al (2020) Antibody-dependent enhancement of coronavirus. Int J Infect Dis 100:483–489
CAS
Article
Google Scholar
Winarski KL, Tang J, Klenow L et al (2019) Antibody-dependent enhancement of influenza disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics. Proc Natl Acad Sci USA 116:15194–15199. https://doi.org/10.1073/pnas.1821317116
CAS
Article
Google Scholar
von Kietzell K, Pozzuto T, Heilbronn R et al (2014) Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q. J Virol 88:8102–8115. https://doi.org/10.1128/jvi.00649-14
Article
Google Scholar
Arvin AM, Fink K, Schmid MA et al (2020) A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 584:353–363
CAS
Article
Google Scholar
Wan Y, Shang J, Sun S et al (2019) Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 94:2015–2034. https://doi.org/10.1128/jvi.02015-19
CAS
Article
Google Scholar
Khandia R, Munjal A, Dhama K et al (2018) Modulation of Dengue/Zika Virus pathogenicity by antibody-dependent enhancement and strategies to protect against enhancement in Zika Virus infection. Front Immunol 9:1
Article
Google Scholar
Halstead SB (2003) Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60:421–467. https://doi.org/10.1016/S0065-3527(03)60011-4
CAS
Article
Google Scholar
Graham BS (2020) Rapid COVID-19 vaccine development. Science 368:945–946. https://doi.org/10.1126/science.abb8923
CAS
Article
Google Scholar
Cloutier M, Nandi M, Ihsan AU et al (2020) ADE and hyperinflammation in SARS-CoV2 infection- comparison with dengue hemorrhagic fever and feline infectious peritonitis. Cytokine 136:155256
CAS
Article
Google Scholar
Ou J, Zhou Z, Dai R et al (2021) V367F mutation in SARS-CoV-2 spike RBD emerging during the early transmission phase enhances viral infectivity through increased human ACE2 receptor binding affinity. J Virol. https://doi.org/10.1128/JVI.00617-21
Article
Google Scholar
Jin X, Xu K, Jiang P et al (2020) Virus strain from a mild COVID-19 patient in Hangzhou represents a new trend in SARS-CoV-2 evolution potentially related to Furin cleavage site. Emerg Microbes Infect 9:1474–1488. https://doi.org/10.1080/22221751.2020.1781551
CAS
Article
Google Scholar
Kim HW, Canchola JG, Brandt CD et al (1969) Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89:422–434. https://doi.org/10.1093/oxfordjournals.aje.a120955
CAS
Article
Google Scholar
Kapikian AZ, Mitchell RH, Chanock RM et al (1969) An epidemiologic study of altered clinical reactivity to Respiratory Syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 89:405–421. https://doi.org/10.1093/oxfordjournals.aje.a120954
CAS
Article
Google Scholar
Wang SF, Tseng SP, Yen CH et al (2014) Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 451:208–214. https://doi.org/10.1016/j.bbrc.2014.07.090
CAS
Article
Google Scholar
von Holle TA, Anthony Moody M (2019) Influenza and antibody-dependent cellular cytotoxicity. Front Immunol 10:1457
Article
Google Scholar
Pincetic A, Bournazos S, Dilillo DJ et al (2014) Type i and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 15:707–716
CAS
Article
Google Scholar
Li M, Zhao L, Zhang C et al (2018) Dengue immune sera enhance Zika virus infection in human peripheral blood monocytes through Fc gamma receptors. PLoS One. https://doi.org/10.1371/journal.pone.0200478
Article
Google Scholar
Kou Z, Quinn M, Chen H et al (2008) Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J Med Virol 80:134–146. https://doi.org/10.1002/jmv.21051
Article
Google Scholar
Sun P, Bauza K, Pal S et al (2011) Infection and activation of human peripheral blood monocytes by dengue viruses through the mechanism of antibody-dependent enhancement. Virology 421:245–252. https://doi.org/10.1016/j.virol.2011.08.026
CAS
Article
Google Scholar
Flipse J, Diosa-Toro MA, Hoornweg TE et al (2016) Antibody-dependent enhancement of dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses. Sci Rep 6:31–50. https://doi.org/10.1038/srep29201
CAS
Article
Google Scholar
Hamzeh-Cognasse H, Damien P, Chabert A et al (2015) Platelets and infections - complex interactions with bacteria. Front Immunol 6:82
Article
Google Scholar
Barnes N, Gavin AL, Tan PS et al (2002) FcγRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity 16:379–389. https://doi.org/10.1016/S1074-7613(02)00287-X
CAS
Article
Google Scholar
Hulett MD, Hogarth PM (1998) The second and third extracellular domains of FcγRI (CD64) confer the unique high affinity binding of IgG2a. Mol Immunol 35:989–996. https://doi.org/10.1016/S0161-5890(98)00069-8
CAS
Article
Google Scholar
Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50. https://doi.org/10.1038/cr.2009.139
CAS
Article
Google Scholar
Dustin ML (2016) Complement receptors in myeloid cell adhesion and phagocytosis. In: Myeloid cells in health and disease. American Society of Microbiology, pp 429–445
Takada A, Feldmann H, Ksiazek TG, Kawaoka Y (2003) Antibody-dependent enhancement of Ebola virus infection. J Virol 77:7539–7544. https://doi.org/10.1128/jvi.77.13.7539-7544.2003
CAS
Article
Google Scholar
Eggleton P, Reid KBM (1998) C1q - how many functions? How many receptors? Trends Cell Biol 8:428–431. https://doi.org/10.1016/S0962-8924(98)01373-7
CAS
Article
Google Scholar
Nicholson-Weller A, Klickstein LB (1999) C1q-binding proteins and C1q receptors. Curr Opin Immunol 11:42–46. https://doi.org/10.1016/S0952-7915(99)80008-9
CAS
Article
Google Scholar
French MA (2019) Antibody-mediated control of HIV-1 infection through an alternative pathway. AIDS 33:1961–1966. https://doi.org/10.1097/QAD.0000000000002313
CAS
Article
Google Scholar
Hawkes RA, Lafferty KJ (1967) The enhancement of virus infectivity by antibody. Virology 33:250–261. https://doi.org/10.1016/0042-6822(67)90144-4
CAS
Article
Google Scholar
Mazzoli S, Lopalco L, Salvi A et al (1999) Human immunodeficiency virus (HIV)-specific IgA and HIV neutralizing activity in the serum of exposed seronegative partners of HIV-seropositive persons. J Infect Dis 180:871–875. https://doi.org/10.1086/314934
CAS
Article
Google Scholar
Jane Cardosa M, Porterfield JS, Gordon S (1983) Complement receptor mediates enhanced flavivirus replication in macrophages. J Exp Med 158:258–263. https://doi.org/10.1084/jem.158.1.258
Article
Google Scholar
Payne S (2017) Immunity and resistance to viruses. Viruses. Elsevier, Amsterdam, pp 61–71
Chapter
Google Scholar
VanBlargan LA, Goo L, Pierson TC (2016) Deconstructing the antiviral neutralizing-antibody response: implications for vaccine development and immunity. Microbiol Mol Biol Rev 80:989–1010. https://doi.org/10.1128/mmbr.00024-15
CAS
Article
Google Scholar
Dowd KA, Jost CA, Durbin AP et al (2011) A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002111
Article
Google Scholar
Dowd KA, Jost CA, Durbin AP et al (2011) A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog 7:1002111. https://doi.org/10.1371/journal.ppat.1002111
CAS
Article
Google Scholar
Mok DZL, Chan KR (2020) The effects of pre-existing antibodies on live-attenuated viral vaccines. Viruses 12:520
CAS
Article
Google Scholar
Adair RA, Roulstone V, Scott KJ et al (2012) Cell carriage, delivery, and selective replication of an oncolytic virus in tumor in patients. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3003578
Article
Google Scholar
Hodgins DC, Shewen PE (2012) Vaccination of neonates: problem and issues. Vaccine 30:1541–1559
CAS
Article
Google Scholar
Guzman MG, Vazquez S (2010) The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2:2649–2662. https://doi.org/10.3390/v2122649
Article
Google Scholar
Pinto D, Park YJ, Beltramello M et al (2020) Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583:290–295. https://doi.org/10.1038/s41586-020-2349-y
CAS
Article
Google Scholar
Yuan M, Wu NC, Zhu X et al (2020) A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368:630–633. https://doi.org/10.1126/science.abb7269
CAS
Article
Google Scholar
McAndrews KM, Dowlatshahi DP, Dai J et al (2020) Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity. JCI Insight. https://doi.org/10.1172/JCI.INSIGHT.142386
Article
Google Scholar
Rogers TF, Zhao F, Huang D et al (2020) Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science 369:956–963. https://doi.org/10.1126/science.abc7520
CAS
Article
Google Scholar
Long QX, Liu BZ, Deng HJ et al (2020) Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 26:845–848. https://doi.org/10.1038/s41591-020-0897-1
CAS
Article
Google Scholar
Fierz W, Walz B (2020) Antibody dependent enhancement due to original antigenic sin and the development of SARS. Front Immunol 11:1120. https://doi.org/10.3389/fimmu.2020.01120
CAS
Article
Google Scholar
Davenport FM, Hennessy AV, Francis T (1953) Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J Exp Med 98:641–656. https://doi.org/10.1084/jem.98.6.641
CAS
Article
Google Scholar
Henry C, Palm AKE, Krammer F, Wilson PC (2018) From original antigenic sin to the universal influenza virus vaccine. Trends Immunol 39:70–79
CAS
Article
Google Scholar
Corti D, Lanzavecchia A (2013) Broadly neutralizing antiviral antibodies. Annu Rev Immunol 31:705–742
CAS
Article
Google Scholar
Hawkes RA (1964) Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls. Aust J Exp Biol Med Sci 42:465–482. https://doi.org/10.1038/icb.1964.44
CAS
Article
Google Scholar
Camargo FDA, Adimy M, Esteva L et al (2021) Modeling the relationship between antibody-dependent enhancement and disease severity in secondary dengue infection. Bull Math Biol. https://doi.org/10.1007/s11538-021-00919-y
Article
Google Scholar
Krilov LR, Anderson LJ, Marcoux L et al (1989) Antibody-mediated enhancement of respiratory syncytial virus infection in two monocyte/macrophage cell lines. J Infect Dis 160:777–782. https://doi.org/10.1093/infdis/160.5.777
CAS
Article
Google Scholar
Willey S, Aasa-Chapman MMI, O’Farrell S et al (2011) Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 8:16. https://doi.org/10.1186/1742-4690-8-16
CAS
Article
Google Scholar
Sauter P, Hober D (2009) Mechanisms and results of the antibody-dependent enhancement of viral infections and role in the pathogenesis of coxsackievirus B-induced diseases. Microbes Infect 11:443–451
CAS
Article
Google Scholar
Hohdatsu T, Yamada M, Tominaga R et al (1998) Antibody-dependent enhancement of feline infectious peritonitis virus infection in feline alveolar macrophages and human monocyte cell line U937 by serum of cats experimentally or naturally infected with feline coronavirus. J Vet Med Sci 60:49–55. https://doi.org/10.1292/jvms.60.49
CAS
Article
Google Scholar
Liu L, Wei Q, Lin Q et al (2019) Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. https://doi.org/10.1172/JCI.INSIGHT.123158
Article
Google Scholar
Luo F, Liao FL, Wang H et al (2018) Evaluation of antibody-dependent enhancement of SARS-cov infection in rhesus macaques immunized with an inactivated SARS-CoV vaccine. Virol Sin 33:201–204
Article
Google Scholar
Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS | HKMJ. https://www.hkmj.org/abstracts/v22n3%20Suppl%204/25.htm. Accessed 9 Aug 2021
Du L, Zhao G, Yang Y et al (2014) A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in middle east respiratory syndrome coronavirus spike protein. J Virol 88:7045. https://doi.org/10.1128/JVI.00433-14
CAS
Article
Google Scholar
Schlesinger JJ, Brandriss MW (1981) Antibody-mediated infection of macrophages and macrophage-like cell lines with 17D-yellow fever virus. J Med Virol 8:103–117. https://doi.org/10.1002/JMV.1890080204
CAS
Article
Google Scholar
Halstead SB, O’rourke EJ (1977) Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265:739–741. https://doi.org/10.1038/265739A0
CAS
Article
Google Scholar
Halstead SB (1979) In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 140:527–533. https://doi.org/10.1093/INFDIS/140.4.527
CAS
Article
Google Scholar
Homsy J, Meyer M, Tateno M et al (1989) The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science 244:1357–1360. https://doi.org/10.1126/SCIENCE.2786647
CAS
Article
Google Scholar
Robinson WE, Montefiori D, Mitchell W (1988) Antibody-dependent enhancement of human immunodeficiency virus type 1 infection. Lancet 1:790–794. https://doi.org/10.1016/S0140-6736(88)91657-1
Article
Google Scholar
Takeda A, Tuazon CU, Ennis FA (1988) Antibody-enhanced infection by HIV-1 via Fc receptor-mediated entry. Science 242:580–583. https://doi.org/10.1126/SCIENCE.2972065
CAS
Article
Google Scholar
Yao JS, Kariwa H, Takashima I et al (1992) Antibody-dependent enhancement of hantavirus infection in macrophage cell lines. Arch Virol 122:107–118. https://doi.org/10.1007/BF01321121
CAS
Article
Google Scholar
Takada A, Watanabe S, Okazaki K et al (2001) Infectivity-enhancing antibodies to Ebola virus glycoprotein. J Virol 75:2324–2330. https://doi.org/10.1128/JVI.75.5.2324-2330.2001
CAS
Article
Google Scholar
Chanas AC, Gould EA, Clegg JC, Varma MG (1982) Monoclonal antibodies to Sindbis virus glycoprotein E1 can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis. J Gen Virol 58(Pt 1):37–46. https://doi.org/10.1099/0022-1317-58-1-37
CAS
Article
Google Scholar
Millican D, Porterfield JSP (1982) Relationship between glycoproteins of the viral envelope of bunyaviruses and antibody-dependent plaque enhancement. J Gen Virol 63(Pt 1):233–236. https://doi.org/10.1099/0022-1317-63-1-233
Article
Google Scholar
Ochiai H, Kurokawa M, Hayashi K, Niwayama S (1988) Antibody-mediated growth of Influenza A NWS virus in macrophagelike cell line P388D1. J Virol 62:20
CAS
Article
Google Scholar
Ochiai H, Kurokawa M, Matsui S et al (1992) Infection enhancement of Influenza A NWS virus in primary murine macrophages by anti-hemagglutinin monoclonal antibody. J Med Virol 36:217–221. https://doi.org/10.1002/JMV.1890360312
CAS
Article
Google Scholar
Weiss RC, Scott FW (1981) Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp Immunol Microbiol Infect Dis 4:175. https://doi.org/10.1016/0147-9571(81)90003-5
CAS
Article
Google Scholar
King AA, Sands JJ, Porterfield JS (1984) Antibody-mediated enhancement of rabies virus infection in a mouse macrophage cell line (P388D1). J Gen Virol 65(Pt 6):1091–1093. https://doi.org/10.1099/0022-1317-65-6-1091
Article
Google Scholar
Inada T, Chong KT, Mims CA (1985) Enhancing antibodies, macrophages and virulence in mouse cytomegalovirus infection. J Gen Virol 66(Pt 4):871–878. https://doi.org/10.1099/0022-1317-66-4-871
Article
Google Scholar
Baxt B, Mason PW (1995) Foot-and-mouth disease virus undergoes restricted replication in macrophage cell cultures following Fc receptor-mediated adsorption. Virology 207:503–509. https://doi.org/10.1006/VIRO.1995.1110
CAS
Article
Google Scholar
Jarasch-Althof N, Wiesener N, Schmidtke M et al (2010) Antibody-dependent enhancement of coxsackievirus B3 infection of primary CD19+ B lymphocytes. Viral Immunol 23:369–376. https://doi.org/10.1089/VIM.2010.0018
CAS
Article
Google Scholar
Halstead SB, Shotwell H, Casals J (1973) Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. J Infect Dis 128:15–22. https://doi.org/10.1093/INFDIS/128.1.15
CAS
Article
Google Scholar
Füst G, Tóth FD, Kiss J et al (1994) Neutralizing and enhancing antibodies measured in complement-restored serum samples from HIV-1-infected individuals correlate with immunosuppression and disease. AIDS 8:603–609. https://doi.org/10.1097/00002030-199405000-00005
Article
Google Scholar
Furuyama W, Marzi A, Carmody AB et al (2016) Fcγ-receptor IIa-mediated Src signaling pathway is essential for the antibody-dependent enhancement of ebola virus infection. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1006139
Article
Google Scholar
Guzman MG, Alvarez M, Halstead SB (2013) Secondary infection as a risk factor for Dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Adv Virol 158:1445–1459
CAS
Google Scholar
Kliks SC, Nimmanitya S, Nisalak A, Burke DS (1988) Evidence that maternal dengue antibodies are important in the development of dengue hemorrhagic fever in infants. Am J Trop Med Hyg 38:411–419. https://doi.org/10.4269/ajtmh.1988.38.411
CAS
Article
Google Scholar
Chan KR, Wang X, Saron WAA et al (2016) Cross-reactive antibodies enhance live attenuated virus infection for increased immunogenicity. Nat Microbiol 1:1–10. https://doi.org/10.1038/nmicrobiol.2016.164
CAS
Article
Google Scholar
Saito Y, Moi ML, Takeshita N et al (2016) Japanese encephalitis vaccine-facilitated dengue virus infection-enhancement antibody in adults. BMC Infect Dis 16:578. https://doi.org/10.1186/s12879-016-1873-8
CAS
Article
Google Scholar
Zhao J, Yuan Q, Wang H et al (2020) Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis 71:2027–2034. https://doi.org/10.1093/cid/ciaa344
CAS
Article
Google Scholar
Tillett RL, Sevinsky JR, Hartley PD et al (2020) Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30764-7
Article
Google Scholar
Antibody-dependent enhancement of SARS coronavirus infection and its role in the pathogenesis of SARS | HKMJ. https://www.hkmj.org/abstracts/v22n3%20Suppl%204/25.htm. Accessed 12 May 2021
Leung DTM, Tam FCH, Chun HM et al (2004) Antibody response of patients with Severe Acute Respiratory Syndrome (SARS) targets the viral nucleocapsid. J Infect Dis 190:379–386. https://doi.org/10.1086/422040
CAS
Article
Google Scholar
Cegolon L, Pichierri J, Mastrangelo G et al (2020) Hypothesis to explain the severe form of COVID-19 in Northern Italy. BMJ Glob Health 5:e002564
Article
Google Scholar
Tetro JA (2020) Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect 22:72–73. https://doi.org/10.1016/j.micinf.2020.02.006
CAS
Article
Google Scholar
Ladner JT, Henson SN, Boyle AS et al (2020) Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with an endemic human CoV. bioRxiv. https://doi.org/10.1101/2020.07.27.222943
Ma Z, Li P, Ji Y et al (2020) Cross-reactivity towards SARS-CoV-2: the potential role of low-pathogenic human coronaviruses. Lancet Microbe 1:e151. https://doi.org/10.1016/s2666-5247(20)30098-7
CAS
Article
Google Scholar
Radaev S, Motyka S, Fridman WH et al (2001) The structure of a human type III Fcγ receptor in complex with Fc. J Biol Chem 276:16469–16477. https://doi.org/10.1074/jbc.M100350200
CAS
Article
Google Scholar
Sondermann P, Huber R, Oosthulzen V, Jacob U (2000) The 3.2-Å crystal structure of the human IgG1 Fc fragment-FcγRIII complex. Nature 406:267–273. https://doi.org/10.1038/35018508
CAS
Article
Google Scholar
Krapp S, Mimura Y, Jefferis R et al (2003) Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 325:979–989. https://doi.org/10.1016/S0022-2836(02)01250-0
CAS
Article
Google Scholar
Shields RL, Lai J, Keck R et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740. https://doi.org/10.1074/jbc.M202069200
CAS
Article
Google Scholar
Shinkawa T, Nakamura K, Yamane N et al (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473. https://doi.org/10.1074/jbc.M210665200
CAS
Article
Google Scholar
Yamane-Ohnuki N, Satoh M (2009) Production of therapeutic antibodies with controlled fucosylation. MAbs 1:230–236
Article
Google Scholar
Chakraborty S, Edwards K, Buzzanco AS et al (2020) Symptomatic SARS-CoV-2 infections display specific IgG Fc structures. medRxiv. https://doi.org/10.1101/2020.05.15.20103341
Larsen MD, de Graaf EL, Sonneveld ME et al (2021) Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science. https://doi.org/10.1126/science.abc8378
Article
Google Scholar
Graham BS (2016) Vaccines against respiratory syncytial virus: the time has finally come. Vaccine 34:3535–3541. https://doi.org/10.1016/j.vaccine.2016.04.083
Article
Google Scholar
Nader PR, Horwitz MS, Rousseau J (1968) Atypical exanthem following exposure to natural measles: eleven cases in children previously inoculated with killed vaccine. J Pediatr 72:22–28. https://doi.org/10.1016/S0022-3476(68)80396-8
Article
Google Scholar
Polack FP (2007) Atypical measles and enhanced respiratory syncytial virus disease (ERD) made simple. Pediatr Res 62:111–115
Article
Google Scholar
Su S, Du L, Jiang S (2020) Learning from the past: development of safe and effective COVID-19 vaccines. Nat Rev Microbiol 1:211–219
Google Scholar
Lee WS, Wheatley AK, Kent SJ, DeKosky BJ (2020) Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 5:1185–1191. https://doi.org/10.1038/s41564-020-00789-5
CAS
Article
Google Scholar
Polack FP, Teng MN, Collins PL et al (2002) A role for immune complexes in enhanced respiratory syncytial virus disease. J Exp Med 196:859–865. https://doi.org/10.1084/jem.20020781
CAS
Article
Google Scholar
Polack FP, Hoffman SJ, Crujeiras G, Griffin DE (2003) A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nat Med 9:1209–1213. https://doi.org/10.1038/nm918
CAS
Article
Google Scholar
Gao T, Hu M, Zhang X et al (2020) Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv 2020.03.29.20041962
Gralinski LE, Sheahan TP, Morrison TE et al (2018) Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. https://doi.org/10.1128/mBio.01753-18
Article
Google Scholar
Gao T, Hu M, Zhang X et al (2020) Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv 2020.03.29.20041962. https://doi.org/10.1101/2020.03.29.20041962
Nechipurenko YD, Anashkina AA, Matveeva OV (2020) Change of antigenic determinants of SARS-CoV-2 virus S-protein as a possible cause of antibody-dependent enhancement of virus infection and cytokine storm. Biophysics 65:703–709. https://doi.org/10.1134/S0006350920040119
CAS
Article
Google Scholar
Jiang L, Tang K, Levin M et al (2020) COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis 20:e276–e288
CAS
Article
Google Scholar
Ricke DO (2021) Two different antibody-dependent enhancement (ADE) risks for SARS-CoV-2 antibodies. Front Immunol 12:640093. https://doi.org/10.3389/fimmu.2021.640093
CAS
Article
Google Scholar