Skip to main content

Advertisement

Log in

Role of Mitochondria in Generation of Phenotypic Heterogeneity in Yeast

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

A cell’s phenotype is determined by its genome sequence and epigenetic state which translate into the biochemical reactions occurring inside the cells. As these biochemical processes are driven by small biological molecules, stochastic fluctuations may arise in the number of these biological molecules inside the cell and in the interactions between these molecules. These fluctuations can cause temporal variations in the cellular processes leading to variations in phenotype between two cells present in a population under identical environmental condition. Phenotypic variations in a population can enable a small fraction of cells to survive sudden changes in the environmental condition, as some of the cells are always prepared for such a change. Phenotypic variations can thus have very important implications for survival of a cell population and have been shown to affect our ability to treat human diseases—from eradication of a bacterial infection to treatment of cancer. In this review, I discuss the role of mitochondria, an important organelle in all eukaryotic cells, in generation of phenotypic heterogeneity. Mitochondria contains its own genome in multiple copies per cell and many proteins and RNA molecules required for proper functioning of mitochondria are present on the mitochondrial genome. Variations in number of copies of the mitochondrial genomes can thus lead to variations in mitochondrial functional state. As mitochondria have important roles in several cellular process, this can lead to variations in several cellular phenotypes including drug resistance. In this context, I also discuss the role of mitochondria in human diseases where mitochondrial heterogeneity could have important implications for disease progression and therapy. Thus, understanding the role of mitochondria in generation of phenotypic variation assumes significant importance in the context of human diseases as well as emergence of drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Similar content being viewed by others

References

  1. Gallion J et al (2017) Predicting phenotype from genotype: Improving accuracy through more robust experimental and computational modeling. Hum Mutat 38:569–580

    Article  CAS  Google Scholar 

  2. Lehner B (2013) Genotype to phenotype: lessons from model organisms for human genetics. Nat Rev Genet 14:168–178

    Article  CAS  Google Scholar 

  3. Koch L (2019) Genotype–phenotype mapping in another dimension. Nat Rev Genet 20:564–565

    Article  CAS  Google Scholar 

  4. Burga A, Lehner B (2013) Predicting phenotypic variation from genotypes, phenotypes and a combination of the two. Curr Opin Biotechnol 24:803–809

    Article  CAS  Google Scholar 

  5. Nuzhdin SV, Friesen ML, McIntyre LM (2012) Genotype-phenotype mapping in a post-GWAS world. Trends Genet 28:421–426

    Article  CAS  Google Scholar 

  6. Porto A, Schmelter R, Vandeberg JL, Marroig G, Cheverud JM (2016) Evolution of the genotype-to-phenotype map and the cost of pleiotropy in mammals. Genetics 204:1601–1612

    Article  Google Scholar 

  7. Domingo J, Baeza-Centurion P, Lehner B (2019) The causes and consequences of genetic interactions (Epistasis). Annu Rev Genomics Hum Genet 20:433–460

    Article  CAS  Google Scholar 

  8. Pavlicev M, Norgard EA, Fawcett GL, Cheverud JM (2011) Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. J Exp Zool Part B Mol Dev Evol 316B:371–385

    Article  Google Scholar 

  9. Polster R, Petropoulos CJ, Bonhoeffer S, Guillaume F (2016) Epistasis and pleiotropy affect the modularity of the genotype–phenotype map of cross-resistance in HIV-1. Mol Biol Evol 33:3213–3225

    Article  CAS  Google Scholar 

  10. Nichol D, Robertson-Tessi M, Jeavons P, Anderson ARA (2016) Stochasticity in the genotype-phenotype map: implications for the robustness and persistence of bet-hedging. Genetics 204:1523–1539

    Article  Google Scholar 

  11. Trujillano D et al (2017) A comprehensive global genotype-phenotype database for rare diseases. Mol Genet Genomic Med 5:66–75

    Article  Google Scholar 

  12. Lehner B (2007) Modelling genotype-phenotype relationships and human disease with genetic interaction networks. J Exp Biol 210:1559–1566

    Article  Google Scholar 

  13. Zhang W et al (2018) Computational resources associating diseases with genotypes, phenotypes and exposures. Brief Bioinform. https://doi.org/10.1093/bib/bby071

    Article  Google Scholar 

  14. Verma A et al (2019) Human-disease phenotype map derived from PheWAS across 38,682 individuals. Am J Hum Genet 104:55–64

    Article  CAS  Google Scholar 

  15. Beerenwinkel N (2003) Geno2pheno: estimating phenotypic drug resistance from HIV-1 genotypes. Nucleic Acids Res 31:3850–3855

    Article  CAS  Google Scholar 

  16. Drouin A et al (2019) Interpretable genotype-to-phenotype classifiers with performance guarantees. Sci Rep 9:1–3

    Article  CAS  Google Scholar 

  17. Winkler LR et al (2016) Population structure and genotype-phenotype associations in a collection of oat landraces and historic cultivars. Front Plant Sci 7:1077

    Google Scholar 

  18. Casacuberta JM, Jackson S, Panaud O, Purugganan M, Wendel J (2016) Evolution of plant phenotypes, from genomes to traits. G3 Genes Genomes Genetics 6:775–778

    Google Scholar 

  19. Liti G, Warringer J, Blomberg A (2017) Budding yeast strains and genotype–phenotype mapping. Cold Spring Harb Protoc 2017:606–610

    Google Scholar 

  20. Brbić M et al (2016) The landscape of microbial phenotypic traits and associated genes. Nucleic Acids Res 44:10074–10090

    Google Scholar 

  21. Jelier R, Semple JI, Garcia-Verdugo R, Lehner B (2011) Predicting phenotypic variation in yeast from individual genome sequences. Nat Genet 43:1270–1274

    Article  CAS  Google Scholar 

  22. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N (2017) Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 27:626–638

    Article  CAS  Google Scholar 

  23. Meziti A et al (2019) Quantifying the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal riverine gradient. ISME J 13:767–779

    Article  Google Scholar 

  24. Virdi JS, Sachdeva P (2005) Genetic diversity of pathogenic microorganisms: Basic insights, public health implications and the Indian initiatives. Curr Sci 89:113–123

    Google Scholar 

  25. Turajlic S, Sottoriva A, Graham T, Swanton C (2019) Resolving genetic heterogeneity in cancer. Nat Rev Genet 20:404–416

    Article  CAS  Google Scholar 

  26. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–345

    Article  CAS  Google Scholar 

  27. Stanta G, Bonin S (2018) Overview on clinical relevance of intra-tumor heterogeneity. Front Med 5:85

    Article  Google Scholar 

  28. Casadesús J, Low DA (2013) Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem 288:13929–13935

    Article  CAS  Google Scholar 

  29. Easwaran H, Tsai H-C, Baylin SB (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell 54:716–727

    Article  CAS  Google Scholar 

  30. Assenov Y, Brocks D, Gerhäuser C (2018) Intratumor heterogeneity in epigenetic patterns. Semin Cancer Biol 51:12–21

    Article  CAS  Google Scholar 

  31. Casadesús J (2016) Bacterial DNA methylation and methylomes. Adv Exp Med Biol 945:35–61

    Article  CAS  Google Scholar 

  32. Sánchez-Romero MA, Cota I, Casadesús J (2015) DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 25:9–16

    Article  CAS  Google Scholar 

  33. Willbanks A et al (2016) The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet Epigenetics 1:25–36

    Google Scholar 

  34. Rowley MJ, Corces VG (2018) Organizational principles of 3D genome architecture. Nat Rev Genet 19:789–800

    Article  CAS  Google Scholar 

  35. Cheung P et al (2018) Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173:1385–1397.e14

    Article  CAS  Google Scholar 

  36. Lo P-K, Zhou Q (2018) Emerging techniques in single-cell epigenomics and their applications to cancer research. J Clin Genomics 1.

  37. Furlan-Magaril M, Várnai C, Nagano T, Fraser P (2015) 3D genome architecture from populations to single cells. Curr Opin Genet Dev 31:36–41

    Article  CAS  Google Scholar 

  38. Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development 136:3853–3862

    Article  CAS  Google Scholar 

  39. van Boxtel C, van Heerden JH, Nordholt N, Schmidt P, Bruggeman FJ (2017) Taking chances and making mistakes: non-genetic phenotypic heterogeneity and its consequences for surviving in dynamic environments. J R Soc Interface 14:20170141

    Article  CAS  Google Scholar 

  40. Li X, Guo T, Mu Q, Li X, Yu J (2018) Genomic and environmental determinants and their interplay underlying phenotypic plasticity. Proc Natl Acad Sci USA 115:6679–6684

    Article  CAS  Google Scholar 

  41. Huh D, Paulsson J (2011) Non-genetic heterogeneity from random patitioning at cell division. Nat Genet 43:95–100

    Article  CAS  Google Scholar 

  42. Brock A, Chang H, Huang S (2009) Non-genetic heterogeneity a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 10:336–342

    Article  CAS  Google Scholar 

  43. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science (80–) 297:1183–1186

    Article  CAS  Google Scholar 

  44. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587

    Article  CAS  Google Scholar 

  45. Thomas P, Terradot G, Danos V, Weiße AY (2018) Sources, propagation and consequences of stochasticity in cellular growth. Nat Commun 9:4528

    Article  CAS  Google Scholar 

  46. Spudich JL, Koshland DE (1976) Non-genetic individuality: chance in the single cell. Nature 262:467–471

    Article  CAS  Google Scholar 

  47. Mcadams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA 94:814–819

    Article  CAS  Google Scholar 

  48. Battich N, Stoeger T, Pelkmans L (2015) Control of transcript variability in single mammalian cells. Cell 163:1596–1610

    Article  CAS  Google Scholar 

  49. Berg OG (1978) A model for the statistical fluctuations of protein numbers in a microbial population. J Theor Biol 71:587–603

    Article  CAS  Google Scholar 

  50. Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078

    Article  CAS  Google Scholar 

  51. Xue B, Leibler S (2018) Benefits of phenotypic plasticity for population growth in varying environments. Proc Natl Acad Sci USA 115:12745–12750

    Article  CAS  Google Scholar 

  52. Philippi T, Seger J (1989) Hedging one’s evolutionary bets, revisited. Trends Ecol Evol 4:41–44

    Article  CAS  Google Scholar 

  53. Price TD, Qvarnström A, Irwin DE (2003) The role of phenotypic plasticity in driving genetic evolution. Proc R Soc B 270:1433–1440

    Article  Google Scholar 

  54. Chevin LM, Gallet R, Gomulkiewicz R, Holt RD, Fellous S (2013) Phenotypic plasticity in evolutionary rescue experiments. Philos Trans R Soc B 368:20120089

    Article  Google Scholar 

  55. Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C (2019) Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24:65–78

    Article  CAS  Google Scholar 

  56. Carja O, Plotkin JB (2017) The evolutionary advantage of heritable phenotypic heterogeneity /631/181/2474 /631/181/2468 article. Sci Rep 7:1–2

    Article  CAS  Google Scholar 

  57. Bohacek J, Mansuy IM (2015) Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat Rev Genet 16:641–652

    Article  CAS  Google Scholar 

  58. Carja O, Plotkin JB (2019) Evolutionary rescue through partly heritable phenotypic variability. Genetics 211:977–988

    Article  Google Scholar 

  59. Levin BR, Rozen DE (2006) Non-inherited antibiotic resistance. Nat Rev Microbiol 4:556–562

    Article  CAS  Google Scholar 

  60. Blake WJ, Kærn M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422:633–637

    Article  CAS  Google Scholar 

  61. Newman JRS et al (2006) Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:840–846

    Article  CAS  Google Scholar 

  62. Taniguchi Y et al (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science (80–) 329:533–538

    Article  CAS  Google Scholar 

  63. Silander OK et al (2012) A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli. PLoS Genet 8:e1002443

    Article  CAS  Google Scholar 

  64. Hornung G et al (2012) Noise-mean relationship in mutated promoters. Genome Res 22:2409–2417

    Article  CAS  Google Scholar 

  65. Chen X, Zhang J (2016) The genomic landscape of position effects on protein expression level and noise in yeast. Cell Syst 2:347–354

    Article  CAS  Google Scholar 

  66. Libby E, Ratcliff WC (2019) Shortsighted evolution constrains the efficacy of long-term bet hedging. Am Nat 193:409–423

    Article  Google Scholar 

  67. Starrfelt J, Kokko H (2012) Bet-hedging–a triple trade-off between means, variances and correlations. Biol Rev Camb Philos Soc 87:742–755

    Article  Google Scholar 

  68. Levy SF, Ziv N, Siegal ML (2012) Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol 10:e1001325

    Article  CAS  Google Scholar 

  69. Bishop AL, Rab FA, Sumner ER, Avery SV (2007) Phenotypic heterogeneity can enhance rare-cell survival in ‘stress-sensitive’ yeast populations. Mol Microbiol 63:507–520

    Article  CAS  Google Scholar 

  70. Holland SL, Reader T, Dyer PS, Avery SV (2014) Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress. Environ Microbiol 16:1729–1740

    Article  Google Scholar 

  71. Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10:30–38

    Article  CAS  Google Scholar 

  72. Dewachter L, Fauvart M, Michiels J (2019) Bacterial heterogeneity and antibiotic survival: understanding and combatting persistence and heteroresistance. Mol Cell 76:255–267

    Article  CAS  Google Scholar 

  73. Sheng S et al (2018) Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: our experience and a literature review. Cancer Metastasis Rev 37:655–663

    Article  Google Scholar 

  74. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337

    Article  CAS  Google Scholar 

  75. Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334

    Article  CAS  Google Scholar 

  76. Inde Z, Dixon SJ (2018) The impact of non-genetic heterogeneity on cancer cell death. Crit Rev Biochem Mol Biol 53:99–114

    Article  CAS  Google Scholar 

  77. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21:1258–1266

    Article  CAS  Google Scholar 

  78. Turner NC, Reis-Filho JS (2012) Genetic heterogeneity and cancer drug resistance. Lancet Oncol 13:e178–e185

    Article  Google Scholar 

  79. Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108:479–485

    Article  CAS  Google Scholar 

  80. Pisco AO et al (2013) Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat Commun 4:2467

    Article  CAS  Google Scholar 

  81. Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814

    Article  Google Scholar 

  82. Acar M, Mettetal JT, van Oudenaarden A (2008) Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40:471–475

    Article  CAS  Google Scholar 

  83. Maughan H, Nicholson WL (2004) Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J Bacteriol 186:2212–2214

    Article  CAS  Google Scholar 

  84. Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918

    Article  CAS  Google Scholar 

  85. Mitchell S, Roy K, Zangle TA, Hoffmann A (2018) Nongenetic origins of cell-to-cell variability in B lymphocyte proliferation. Proc Natl Acad Sci USA 115:E2888–E2897

    Article  CAS  Google Scholar 

  86. Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13:497–508

    Article  CAS  Google Scholar 

  87. Bettenworth V et al (2019) Phenotypic heterogeneity in bacterial quorum sensing systems. J Mol Biol 431:4530–4546

    Article  CAS  Google Scholar 

  88. Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science (80–) 317:526–529

    Article  CAS  Google Scholar 

  89. Sharma A et al (2019) Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors. Cell Rep 29:2164–2174.e5

    Article  CAS  Google Scholar 

  90. Nguyen A, Yoshida M, Goodarzi H, Tavazoie SF (2016) Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. Nat Commun 7:11246

    Article  CAS  Google Scholar 

  91. Farquhar KS et al (2019) Role of network-mediated stochasticity in mammalian drug resistance. Nat Commun 10:2766

    Article  CAS  Google Scholar 

  92. Hammerlindl H, Schaider H (2018) Tumor cell-intrinsic phenotypic plasticity facilitates adaptive cellular reprogramming driving acquired drug resistance. J Cell Commun Signal 12:133–141

    Article  Google Scholar 

  93. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    Article  CAS  Google Scholar 

  94. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science (80–) 305:1622–1625

    Article  CAS  Google Scholar 

  95. Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330

    Article  CAS  Google Scholar 

  96. Yaakov G, Lerner D, Bentele K, Steinberger J, Barkai N (2017) Coupling phenotypic persistence to DNA damage increases genetic diversity in severe stress. Nat Ecol Evol 1:16

    Article  Google Scholar 

  97. Kiviet DJ et al (2014) Stochasticity of metabolism and growth at the single-cell level. Nature 514:376–379

    Article  CAS  Google Scholar 

  98. Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ (2014) Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 513:418–421

    Article  CAS  Google Scholar 

  99. Roesch A et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594

    Article  CAS  Google Scholar 

  100. Gupta PB et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644

    Article  CAS  Google Scholar 

  101. Page R, Peti W (2016) Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12:208–214

    Article  CAS  Google Scholar 

  102. Rotem E et al (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci USA 107:12541–12546

    Article  CAS  Google Scholar 

  103. Sala A, Bordes P, Genevaux P (2014) Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins 6:1002–1020

    Article  CAS  Google Scholar 

  104. Schuster CF, Bertram R (2016) Toxin-antitoxin systems of Staphylococcus aureus. Toxins 8:140

    Article  CAS  Google Scholar 

  105. Williams JJ, Halvorsen EM, Dwyer EM, DiFazio RM, Hergenrother PJ (2011) Toxin-antitoxin (TA) systems are prevalent and transcribed in clinical isolates of Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 322:41–50

    Article  CAS  Google Scholar 

  106. Levin-Reisman I et al (2017) Antibiotic tolerance facilitates the evolution of resistance. Science (80–) 355:826–830

    Article  CAS  Google Scholar 

  107. Neu HC (1992) The crisis in antibiotic resistance. Science (80–) 257:1064–1073

    Article  CAS  Google Scholar 

  108. Rossolini GM, Arena F, Pecile P, Pollini S (2014) Update on the antibiotic resistance crisis. Curr Opin Pharmacol 18:56–60

    Article  CAS  Google Scholar 

  109. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119–146

    Article  CAS  Google Scholar 

  110. Sanglard D (2016) Emerging threats in antifungal-resistant fungal pathogens. Front Med 3:11

    Article  Google Scholar 

  111. Housman G et al (2014) Drug resistance in cancer: an overview. Cancers 6:1769–1792

    Article  CAS  Google Scholar 

  112. Ziv N, Siegal ML, Gresham D (2013) Genetic and nongenetic determinants of cell growth variation assessed by high-throughput microscopy. Mol Biol Evol 30:2568–2578

    Article  CAS  Google Scholar 

  113. Dhar R, Missarova AM, Lehner B, Carey LB (2019) Single cell functional genomics reveals the importance of mitochondria in cell-to-cell phenotypic variation. Elife 8:e38904

    Article  Google Scholar 

  114. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188

    Article  CAS  Google Scholar 

  115. Kelsey G, Stegle O, Reik W (2017) Single-cell epigenomics: recording the past and predicting the future. Science 358:69–75

    Article  CAS  Google Scholar 

  116. Stuart T, Satija R (2019) Integrative single-cell analysis. Nat Rev Genet 20:257–272

    Article  CAS  Google Scholar 

  117. Kulkarni A, Anderson AG, Merullo DP, Konopka G (2019) Beyond bulk: a review of single cell transcriptomics methodologies and applications. Curr Opin Biotechnol 58:129–136

    Article  CAS  Google Scholar 

  118. Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10:628–638

    Article  CAS  Google Scholar 

  119. Kaspy I et al (2013) HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 4:3001

    Article  CAS  Google Scholar 

  120. Arnoldini M et al (2014) Bistable expression of virulence genes in salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol 12:e1001928

    Article  CAS  Google Scholar 

  121. Patange O et al (2018) Escherichia coli can survive stress by noisy growth modulation. Nat Commun 9:1

    Article  CAS  Google Scholar 

  122. Li S, Giardina DM, Siegal ML (2018) Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors. PLoS Genet 14:e1007744

    Article  CAS  Google Scholar 

  123. Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  CAS  Google Scholar 

  124. Bertram R, Gram Pedersen M, Luciani DS, Sherman A (2006) A simplified model for mitochondrial ATP production. J Theor Biol 243:575–586

    Article  CAS  Google Scholar 

  125. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell in cell 4th. Figure. Garland Science, New York

    Google Scholar 

  126. Guo R, Gu J, Zong S, Wu M, Yang M (2018) Structure and mechanism of mitochondrial electron transport chain. Biomed J 41:9–20

    Article  Google Scholar 

  127. Berg JM, Jeremy M, Tymoczko JL, Stryer L, Stryer L (2002) Biochemistry. W.H. Freeman, New York

    Google Scholar 

  128. Jonckheere AI, Smeitink JAM, Rodenburg RJT (2012) Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 35:211–225

    Article  CAS  Google Scholar 

  129. Sickmann A et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci USA 100:13207–13212

    Article  CAS  Google Scholar 

  130. Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–D1257

    Article  CAS  Google Scholar 

  131. Freel KC, Friedrich A, Schacherer J (2015) Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Res 15:fov023

    Article  CAS  Google Scholar 

  132. Anderson S et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  Google Scholar 

  133. Whittaker PA, Hammond RC, Luha AA (1972) Mechanism of mitochondrial mutation in yeast. Nat New Biol 238:266–268

    Article  CAS  Google Scholar 

  134. Wang Y, Singh U, Mueller DM (2007) Mitochondrial genome integrity mutations uncouple the yeast Saccharomyces cerevisiae ATP synthase. J Biol Chem 282:8228–8236

    Article  CAS  Google Scholar 

  135. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW (2017) The genetics and pathology of mitochondrial disease. J Pathol 241:236–250

    Article  CAS  Google Scholar 

  136. Koopman WJH, Willems PHGM, Smeitink JAM (2012) Monogenic mitochondrial disorders. N Engl J Med 366:1132–1141

    Article  CAS  Google Scholar 

  137. Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402

    Article  CAS  Google Scholar 

  138. Williamson DH, Fennell DJ (1979) Visualization of yeast mitochondrial DNA with the fluorescent stain ‘DAPI’. Methods Enzymol 56:728–733

    Article  CAS  Google Scholar 

  139. Rooney JP et al (2015) PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol 1241:23–38

    Article  CAS  Google Scholar 

  140. Wai T et al (2010) The role of mitochondrial DNA copy number in mammalian fertility1. Biol Reprod 83:52–62

    Article  CAS  Google Scholar 

  141. Miller FJ (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:61e–61

    Article  CAS  Google Scholar 

  142. Clay Montier LL, Deng JJ, Bai Y (2009) Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genomics 36:125–131

    Article  CAS  Google Scholar 

  143. Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16:530–542

    Article  CAS  Google Scholar 

  144. Stefano GB, Bjenning C, Wang F, Wang N, Kream RM (2017) Mitochondrial heteroplasmy. In: advances in experimental medicine and biology, vol 982. Springer, New York, pp 577–594

    Google Scholar 

  145. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:R551–R560

    Article  CAS  Google Scholar 

  146. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745–754

    Article  CAS  Google Scholar 

  147. Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signalling. In: annals of the New York Academy of Sciences, vol 1147. Blackwell Publishing Inc., Malden, pp 37–52

    Google Scholar 

  148. Munro D, Treberg JR (2017) A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol 220:1170–1180

    Article  Google Scholar 

  149. Schantz PG, Sjöberg B, Svedenhag J (1986) Malate-aspartate and alpha-glycerophosphate shuttle enzyme levels in human skeletal muscle: methodological considerations and effect of endurance training. Acta Physiol Scand 128:397–407

    Article  CAS  Google Scholar 

  150. Gnoni GV, Priore P, Geelen MJH, Siculella L (2009) The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life 61:987–994

    Article  CAS  Google Scholar 

  151. Puig S, Askeland E, Thiele DJ (2005) Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120:99–110

    Article  CAS  Google Scholar 

  152. Veatch JR, McMurray MA, Nelson ZW, Gottschling DE (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137:1247–1258

    Article  Google Scholar 

  153. van Dijk D et al (2015) Slow-growing cells within isogenic populations have increased RNA polymerase error rates and DNA damage. Nat Commun 6:7972

    Article  CAS  Google Scholar 

  154. das Neves RP et al (2010) Connecting variability in global transcription rate to mitochondrial variability. PLoS Biol 8:e1000560

    Article  CAS  Google Scholar 

  155. Guantes R et al (2015) Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res 25:633–644

    Article  CAS  Google Scholar 

  156. Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    Article  CAS  Google Scholar 

  157. Cardamone MD et al (2018) Mitochondrial retrograde signaling in mammals is mediated by the transcriptional cofactor GPS2 via direct mitochondria-to-nucleus translocation. Mol Cell 69:757–772.e7

    Article  CAS  Google Scholar 

  158. Hallstrom TC, Moye-Rowley WS (2000) Multiple signals from dysfunctional mitochondria activate the pleiotropic drug resistance pathway in Saccharomyces cerevisiae. J Biol Chem 275:37347–37356

    Article  CAS  Google Scholar 

  159. Moye-Rowley WS (2005) Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae. Gene 354:15–21

    Article  CAS  Google Scholar 

  160. Ernster L, Ikkos D, Luft R (1959) Enzymic activities of human skeletal muscle mitochondria: a tool in clinical metabolic research. Nature 184:1851–1854

    Article  CAS  Google Scholar 

  161. Gorman GS et al (2016) Mitochondrial diseases. Nat Rev Dis Prim 2:16080

    Article  Google Scholar 

  162. Ryzhkova AI et al (2018) Mitochondrial diseases caused by mtDNA mutations: a mini-review. Ther Clin Risk Manag 14:1933–1942

    Article  CAS  Google Scholar 

  163. Dorn GW, Vega RB, Kelly DP (2015) Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29:1981–1991

    Article  CAS  Google Scholar 

  164. Ichikawa Y et al (2012) Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci USA 109:4152–4157

    Article  CAS  Google Scholar 

  165. Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105

    Article  CAS  Google Scholar 

  166. Bratic A, Larsson NG (2013) The role of mitochondria in aging. J C Invest 123:951–957

    Article  CAS  Google Scholar 

  167. Panel M, Ghaleh B, Morin D (2018) Mitochondria and aging: a role for the mitochondrial transition pore? Aging Cell 17:e12793

    Article  CAS  Google Scholar 

  168. Reznik E et al (2016) Mitochondrial DNA copy number variation across human cancers. Elife 5:e10769

    Article  Google Scholar 

  169. Yin PH et al (2004) Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer 90:2390–2396

    Article  CAS  Google Scholar 

  170. Ye K, Lu J, Ma F, Keinan A, Gu Z (2014) Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals. Proc Natl Acad Sci USA 111:10654–10659

    Article  CAS  Google Scholar 

  171. Lightowlers RN, Chinnery PF, Turnbull DM, Howell N, Turnbuu DM (1997) Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 13:450–455

    Article  CAS  Google Scholar 

  172. Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 5:a021220

    Article  CAS  Google Scholar 

  173. Spurlock B et al (2019) New quantitative approach reveals heterogeneity in mitochondrial structure-function relations in tumor-initiating cells. J Cell Sci 132:230755

    Article  CAS  Google Scholar 

  174. Chen H, Chan DC (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26:39–48

    Article  CAS  Google Scholar 

  175. Woods DC (2017) Mitochondrial heterogeneity: evaluating mitochondrial subpopulation dynamics in stem cells. Stem Cells Int 2017:7068567

    Article  CAS  Google Scholar 

  176. Scott I, Youle RJ (2010) Mitochondrial fission and fusion. Essays Biochem 47:85–98

    Article  CAS  Google Scholar 

  177. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5:a011072

    Google Scholar 

  178. Gilkerson R et al (2013) The mitochondrial nucleoid: Integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol 5:a011080

    Article  CAS  Google Scholar 

  179. Bogenhagen DF (2012) Mitochondrial DNA nucleoid structure. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1819:914–920

    Article  CAS  Google Scholar 

  180. Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646

    Article  CAS  Google Scholar 

  181. Böckler S et al (2017) Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. J Cell Biol 216:2481–2498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the RD lab is supported by an ISIRD Grant from IIT Kharagpur and an ECR grant (ECR/2017/002328) from Science and Engineering Research Board (SERB), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riddhiman Dhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhar, R. Role of Mitochondria in Generation of Phenotypic Heterogeneity in Yeast. J Indian Inst Sci 100, 497–514 (2020). https://doi.org/10.1007/s41745-020-00176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-020-00176-3

Navigation