Skip to main content
Log in

Manipulation of Droplets by Electrostatic Actuation and the Related Hydrodynamics

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The present study preludes the different modes of droplet manipulation using the electrostatic actuation as the driving potential and its association specifically for microfluidics applications. The state of the art in the development of electrowetting is presented with the chronological survey of the literature highlighting specific directions of electrostatic drop manipulation in economic setups. The development of a low cost technique of electrostatic droplet manipulation outside clean room facilities is also presented. In specific, the investigation to analyze the viability of low cost printed circuit board as an electrowetting substrate is discussed in detail. Observations of static and dynamic electrowetting experiments at different actuation potentials are presented to characterize the fabricated substrate and to provide the fundamental insights for the proposition of low cost platform for droplet manoeuvring using electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

Similar content being viewed by others

References

  1. Das AK, Das PK (2010) Multimode dynamics of a liquid drop over an inclined surface with a wettability gradient. Langmuir 26(12):9547–9555

    Article  CAS  Google Scholar 

  2. Sammarco TS, Burns MA (1999) Thermocapillary pumping of discrete drops in microfabricated analysis devices. AIChE J 45(2):350–366

    Article  CAS  Google Scholar 

  3. Franke T, Abate AR, Weitz DA, Wixforth A (2009) Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. Lab Chip 9(18):2625–2627

    Article  CAS  Google Scholar 

  4. Geng X, Yuan H, Oguz HN, Prosperetti A (2001) Bubble-based micropump for electrically conducting liquids. J Micromech Microeng 11(3):270

    Article  Google Scholar 

  5. Limann G (1875) Relations entre les phénomènes électriques et capillaires. Ann Chim Phys 5:494–549

    Google Scholar 

  6. Berge B (1993) Electrocapillarité et mouillage de films isolants par l’eau. Comptes rendus de l’Académie des sciences Série 2 Mécanique Physique Chimie Sciences de l’univers Sciences de la Terre 317(2):157–163

    CAS  Google Scholar 

  7. Pellat H (1894) Force agissant á la surface de séparation de deux diélectriques CR Seances. Acad Sci (Paris) 119:675–678

    Google Scholar 

  8. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726

    Article  CAS  Google Scholar 

  9. Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101

    Article  CAS  Google Scholar 

  10. Kuo JS, Spicar-Mihalic P, Rodriguez I, Chiu DT (2003) Electrowetting-induced droplet movement in an immiscible medium. Langmuir 19(2):250–255

    Article  CAS  Google Scholar 

  11. Cho SK, Moon H, Kim CJ (2003) Creating transporting cutting and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Article  Google Scholar 

  12. Daw R, Finkelstein J (2006) Lab on a chip. Nature 442(7101):367

    Article  CAS  Google Scholar 

  13. Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3(2):159–163

    Article  CAS  Google Scholar 

  14. Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85(7):1128–1130

    Article  CAS  Google Scholar 

  15. Li C, Jiang H (2012) Electrowetting-driven variable-focus microlens on flexible surfaces. Appl Phys Lett 100(23):231105

    Article  Google Scholar 

  16. Li L, Liu C, Ren H, Wang QH (2016) Optical switchable electrowetting lens. IEEE Photon Technol Lett 28(14):1505–1508

    Article  Google Scholar 

  17. Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425(6956):383–385

    Article  CAS  Google Scholar 

  18. Heikenfeld J, Zhou K, Kreit E, Raj B, Yang S, Sun B, Milarcik A, Cla L, Schwartz R (2009) Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat Photonics 3(5):292–296

    Article  CAS  Google Scholar 

  19. Feenstra BJ, Hayes RA, Van Dijk R, Boom RGH, Wagemans MMH, Camps IG, Giraldo A, Heijden B (2006) Electrowetting-based displays: bringing microfluidics alive on-screen. In: Micro electro mechanical systems MEMS 2006 Istanbul 19th IEEE international conference, pp 48–53

  20. Paik PY, Pamula VK, Chakrabarty K (2005) Droplet-based hot spot cooling using topless digital microfluidics on a printed circuit board. In THERMINIC 2005, pp 278–284

  21. Paik PY, Pamula VK, Chakrabarty K (2008) Adaptive cooling of integrated circuits using digital microfluidics. IEEE Trans Very Large Scale Integr (VLSI) Syst 16(4):432–443

    Article  Google Scholar 

  22. Cheng JT, Chen CL (2010) Adaptive chip cooling using electrowetting on coplanar control electrodes. Nanosc Microsc Therm J 14(2):63–74

    Article  CAS  Google Scholar 

  23. Gascoyne PR, Wang XB, Huang Y, Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl 33(3):670–678

    Article  Google Scholar 

  24. Fan SK, Huang PW, Wang TT, Peng YH (2008) Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 8(8):1325–1331

    Article  CAS  Google Scholar 

  25. Shah GJ, Ohta AT, Chiou EPY, Wu MC (2009) EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip 9(12):1732–1739

    Article  CAS  Google Scholar 

  26. Vallet M, Berge B, Vovelle L (1996) Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films. Polymer 37(12):2465–2470

    Article  CAS  Google Scholar 

  27. Washizu M (1998) Electrostatic actuation of liquid droplets for micro-reactor applications. IEEE Trans Ind Appl 34(4):732–737

    Article  CAS  Google Scholar 

  28. Lee J, Moon H, Fowler J, Schoellhammer T, Kim CJ (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators A Phys 95(2):259–268

    Article  CAS  Google Scholar 

  29. Moon H, Cho SK, Garrell RL, Kim CJC (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92(7):4080–4087

    Article  CAS  Google Scholar 

  30. Fouillet Y, Achard JL (2004) Microfluidique discrète et biotechnologie. C R Phys 5(5):577–588

    Article  CAS  Google Scholar 

  31. Cooney CG, Chen CY, Emerling MR, Nadim A, Sterling JD (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid 2(5):435–446

    Article  Google Scholar 

  32. Moon I, Kim J (2006) Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system. Sens Actuators A Phys 130:537–544

    Article  Google Scholar 

  33. Li F, Mugele F (2008) How to make sticky surfaces slippery: contact angle hysteresis in electrowetting with alternating voltage. Appl Phys Lett 92(24):244108

    Article  Google Scholar 

  34. Rajabi N, Dolatabadi A (2010) A novel electrode shape for electrowetting-based microfluidics. Colloids Surf A 365(1):230–236

    Article  CAS  Google Scholar 

  35. Chang JH, Pak JJ (2011) Twin-plate electrowetting for efficient digital microfluidics. Sens Actuators B Chem 160(1):1581–1585

    Article  CAS  Google Scholar 

  36. Malk R, Fouillet Y, Davoust L (2011) Rotating flow within a droplet actuated with AC EWOD. Sens Actuators B Chem 154(2):191–198

    Article  CAS  Google Scholar 

  37. Banerjee AN, Qian S, Joo SW (2011) High-speed droplet actuation on single-plate electrode arrays. J Colloid Interface Sci 362(2):567–574

    Article  CAS  Google Scholar 

  38. Ren H, Fair RB, Pollack MG, Shaughnessy EJ (2002) Dynamics of electro-wetting droplet transport. Sens Actuators B Chem 87(1):201–206

    Article  CAS  Google Scholar 

  39. Jones TB (2009) More about the electromechanics of electrowetting. Mech Res Commun 36(1):2–9

    Article  Google Scholar 

  40. Chen JH, Hsieh WH (2006) Electrowetting-induced capillary flow in a parallel-plate channel. J Colloid Interface Sci 296(1):276–283

    Article  CAS  Google Scholar 

  41. Bahadur V, Garimella SV (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 16(8):1494–1503

    Article  Google Scholar 

  42. Berthier J, Dubois P, Clementz P, Claustre P, Peponnet C, Fouillet Y (2007) Actuation potentials and capillary forces in electrowetting based microsystems. Sens Actuators A Phys 134(2):471–479

    Article  CAS  Google Scholar 

  43. Bahadur V, Garimella SV (2008) Energy minimization-based analysis of electrowetting for microelectronics cooling applications. Microelectron J 39(7):957–965

    Article  CAS  Google Scholar 

  44. Aminfar H, Mohammadpourfard M (2009) Lattice Boltzmann method for electrowetting modeling and simulation. Comput Methods Appl Mech Eng 98(47):3852–3868

    Article  Google Scholar 

  45. Arzpeyma A, Bhaseen S, Dolatabadi A, Wood-Adams P (2008) A coupled electro-hydrodynamic numerical modeling of droplet actuation by electrowetting. Colloids Surf A Physicochem Eng Asp 323(1):28–35

    Article  CAS  Google Scholar 

  46. Abdelgawad M, Park P, Wheeler AR (2009) Optimization of device geometry in single-plate digital microfluidics. J Appl Phys 105(9):094506

    Article  Google Scholar 

  47. Dolatabadi A, Mohseni K, Arzpeyma A (2006) Behaviour of a moving droplet under electrowetting actuation: numerical simulation. Can J Chem Eng 84(1):17–21

    CAS  Google Scholar 

  48. Keshavarz-Motamed Z, Kadem L, Dolatabadi A (2010) Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels. Microfluid Nanofluid 8(1):47–56

    Article  CAS  Google Scholar 

  49. Nelson WC, Kim CJ (2012) Droplet actuation by electrowetting-on-dielectric (EWOD): a review. J Adhes Sci Technol 26(12–17):1747–1771

    CAS  Google Scholar 

  50. Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17(28):R705

    Article  CAS  Google Scholar 

  51. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3(3):245–281

    Article  CAS  Google Scholar 

  52. Jones TB, Perry MP, Melcher JR (1971) Dielectric siphons. Science 174(4015):1232–1233

    Article  CAS  Google Scholar 

  53. Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nadroplet formation. J Appl Phys 89(2):1441–1448

    Article  CAS  Google Scholar 

  54. Kanagasabapathi TT, Kaler KV (2007) Surface microfluidics—high-speed DEP liquid actuation on planar substrates and critical factors in reliable actuation. J Micromech Microeng 17(4):743

    Article  Google Scholar 

  55. Ahmed R, Jones TB (2007) Optimized liquid DEP droplet dispensing. J Micromech Microeng 17(5):1052

    Article  Google Scholar 

  56. Wang KL, Jones TB, Raisanen A (2007) Dynamic control of DEP actuation and droplet dispensing. J Micromech Microeng 17(1):76–80

    Article  Google Scholar 

  57. Prakash R, Paul R, Kaler KV (2010) Liquid DEP actuation and precision dispensing of variable volume droplets. Lab Chip 10(22):3094–3102

    Article  CAS  Google Scholar 

  58. Chugh D, Kaler KV (2010) Integrated liquid and droplet dielectrophoresis for biochemical assays. Microfluid Nanofluid 8(4):445–456

    Article  CAS  Google Scholar 

  59. Kaler KV, Prakash R, Chugh D (2010) Liquid dielectrophoresis and surface microfluidics. Biomicrofluidics 4(2):022805–022817

    Article  Google Scholar 

  60. Jones TB, Fowler JD, Chang YS, Kim CJ (2003) Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 19(18):7646–7651

    Article  CAS  Google Scholar 

  61. Jones TB, Wang KL, Yao DJ (2004) Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. Langmuir 20(7):2813–2818

    Article  CAS  Google Scholar 

  62. Wang KL, Jones TB (2004) Frequency-dependent bifurcation in electromechanical microfluidic structures. J Micromech Microeng 14(6):761–768

    Article  Google Scholar 

  63. Abdelgawad M, Wheeler AR (2008) Low-cost rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4(4):349–355

    Article  CAS  Google Scholar 

  64. Li Y, Chen R, Baker RJ (2014) A fast fabricating electro-wetting platform to implement large droplet manipulation. In: Circuits and systems (MWSCAS). IEEE 57th international midwest symposium, pp 326–329

  65. Gong J, Kim CJ (2008) Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board. J Microelectromech Syst 17(2):257–264

    Article  Google Scholar 

  66. Nardecchia M, Lovecchio N, Llorca PR (2015) 2-D digital microfluidic system for droplet handling using printed circuit board technology. In: AISEM annual conference 2015, vol XVIII, pp 1–4

  67. Li Y, Li H, Baker RJ (2015) A low-cost and high-resolution droplet position detector for an intelligent electrowetting on dielectric device. J Lab Autom 20(6):663–669

    Article  CAS  Google Scholar 

  68. Alavi S, Passandideh-Fard M, Tafteh MH (2011) Electrowetting actuation for a sessile liquid drop: experiments and simulations. In: proceedings of the ASME 9th international conference on nanochannels microchannels and minichannels (ICNMM2011), pp 19–22

  69. Kulkarni M, Sahoo S, Doshi P, Orpe AV (2016) Fingering instability of a suspension film spreading on a spinning disk. Phys Fluids 28(6):063303

    Article  Google Scholar 

  70. Holloway KE, Habdas P, Semsarillar N, Burfitt K, de Bruyn JR (2007) Spreading and fingering in spin coating. Phys Rev E 75(4):046308

    Article  Google Scholar 

  71. Lai CC, Chou FC (2008) Effect of relaxation time on spin coating instability. Jpn J Appl Phys 47(8R):6569

    Article  CAS  Google Scholar 

  72. Stalder AF, Kulik G, Sage D, Barbieri L, Hoffmann P (2006) A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf A Physicochem Eng Asp 286(1):92–103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Kumar Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Kumar, P. & Das, A.K. Manipulation of Droplets by Electrostatic Actuation and the Related Hydrodynamics. J Indian Inst Sci 99, 121–141 (2019). https://doi.org/10.1007/s41745-019-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-0101-0

Navigation