Skip to main content

Halogen Bonding in the Molecular Recognition of Thyroid Hormones and Their Metabolites by Transport Proteins and Thyroid Hormone Receptors

Abstract

Halogen bonding (XB) is an attractive interaction between a halogen atom and an electron donor. Although halogens are electron-rich atoms, they act as electrophiles in these types of interactions. This is due to the presence of a significant positive charge (σ-hole) on the halogen atoms in organic halides along the R-X (R = carbon, nitrogen, halogen) bond. With an increase in the polarizability down the group from fluorine to iodine, the positive charge on the σ-hole increases, which leads to an increase in the strength of XB. Numerous studies revealed that XB is a useful tool to develop supramolecular architectures by self-assembly. Interestingly, XBs are also observed in many biomolecules, such as protein–ligand complexes and nucleic acids containing halogenated nucleotides. In fact, XBs are extensively used to increase the potency and selectivity of small molecule ligands to a target protein. In this minireview, we discuss the role of XBs in the molecular recognition of thyroid hormones (THs) and their metabolites by various transport proteins and thyroid hormone receptors (TRs). THs are naturally occurring iodinated small molecules that are synthesized by the thyroid gland and carried to various target organs by several serum transport proteins, such as transthyretin, human serum albumin, and thyroxine-binding globulin. Interestingly, all these proteins form XBs with THs and these interactions play important roles in the high affinity binding. Furthermore, TRs, such as TRα and TRβ also form XBs with the 3-iodine of THs and triiodothyroacetic acid, an endogenous TH metabolite that shows thyromimetic activity.

This is a preview of subscription content, access via your institution.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

References

  1. 1.

    Metrangolo P, Resnati G (2013) Metal-bound halogen atoms in crystal engineering. Chem Commun 49:1783–1785

    CAS  Google Scholar 

  2. 2.

    Nakamoto K, Margoshes M, Rundle RE (1955) Stretching frequencies as a function of distances in hydrogen bonds. J Am Chem Soc 77:6480–6486

    CAS  Google Scholar 

  3. 3.

    Von P, Schleyer R, West R (1959) Comparison of covalently bonded electro-negative atoms as proton acceptor groups in hydrogen bonding. J Am Chem Soc 81:3164–3165

    Google Scholar 

  4. 4.

    Colin M (1814) Note Sur Quelques Combinaisons de L′iode. Ann Chim 91:252–272

    Google Scholar 

  5. 5.

    Pelletier JCP (1819) Sur Un Nouvel Alcali Végétal (la Strychine) Trouvé Dans La Fève de Saint-Ignace, La Noix Vomique Etc., Ann Chim Phys 10:142–177

  6. 6.

    P. N. 2009-032-1-100 (2010) Categorizing halogen bonding and other noncovalent interactions involving halogen atoms. Chem Int 32:20 − 21

  7. 7.

    Desiraju GRH, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem 85:1711–1713

    CAS  Google Scholar 

  8. 8.

    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the sigma-hole. In: Proceedings of “Modeling interactions in biomolecules II”, Prague, 5th–9th September 2005, J Mol Model 13:291–296

  9. 9.

    Murray JS, Lane P, Clark T, Politzer P (2007) Sigma-hole bonding: molecules containing group VI atoms. J Mol Model 13:1033–1038

    CAS  Google Scholar 

  10. 10.

    Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789–16794

    CAS  Google Scholar 

  11. 11.

    Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) Halogen bonding in fluoroalkylhalides: a quantum chemical study of increasing fluorine substitution. J Phys Chem A 104:1617–1620

    CAS  Google Scholar 

  12. 12.

    Gao K, Goroff NS (2000) Two New iodine-capped carbon rods. J Am Chem Soc 122:9320–9321

    CAS  Google Scholar 

  13. 13.

    Sun A, Lauher JW, Goroff NS (2006) Preparation of poly(diiododiacetylene), an ordered conjugated polymer of carbon and iodine. Science 312:1030–1034

    CAS  Google Scholar 

  14. 14.

    Zou JW, Jiang YJ, Guo M, Hu GX, Zhang B, Liu HC, Yu QS (2005) Ab initio study of the complexes of halogen-containing molecules RX (X = Cl, Br, and I) and NH3: towards understanding the nature of halogen bonding and the electron-accepting propensities of covalently bonded halogen atoms. Chem Eur J 11:740–751

    CAS  Google Scholar 

  15. 15.

    Ananthavel SP, Manoharan M (2001) A theoretical study on electron donor–acceptor complexes of Et2O, Et2S and Me3N with interhalogens, I-X (X = Cl and Br). Chem Phys 269:49–57

    CAS  Google Scholar 

  16. 16.

    Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    CAS  Google Scholar 

  17. 17.

    Gilday LC, Robinson SW, Barendt TA, Langton MJ, Mullaney BR, Beer PD (2015) Halogen bonding in supramolecular chemistry. Chem Rev 115:7118–7195

    CAS  Google Scholar 

  18. 18.

    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Halogen bonding in supramolecular chemistry. Angew Chem Int Ed 47:6114–6127

    CAS  Google Scholar 

  19. 19.

    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    CAS  Google Scholar 

  20. 20.

    Ford MC, Ho PS (2016) Computational tools to model halogen bonds in medicinal chemistry. J Med Chem 59:1655–1670

    CAS  Google Scholar 

  21. 21.

    Hays FA, Teegarden A, Jones ZJ, Harms M, Raup D, Watson J, Cavaliere E, Ho PS (2005) How sequence defines structure: a crystallographic map of DNA structure and conformation. Proc Natl Acad Sci USA 102:7157–7162

    CAS  Google Scholar 

  22. 22.

    Hays FA, Vargason JM, Ho PS (2003) Effect of sequence on the conformation of DNA holliday junctions. Biochemistry 42:9586–9597

    CAS  Google Scholar 

  23. 23.

    Mendez L, Henriquez G, Sirimulla S, Narayan M (2017) Looking back, looking forward at halogen bonding in drug discovery. Molecules 22:1397

    Google Scholar 

  24. 24.

    Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev 40:2267–2278

    CAS  Google Scholar 

  25. 25.

    Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM (2013) Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J Med Chem 56:1363–1388

    CAS  Google Scholar 

  26. 26.

    Mondal S, Gong X, Zhang X, Salinger AJ, Zheng L, Sen S, Weerapana E, Thompson PR (2019) Halogen bonding increases the potency and isozyme selectivity of protein arginine deiminase 1 Inhibitors. Angew Chem Int Ed 58:12476–12480

    CAS  Google Scholar 

  27. 27.

    Jakka SR, Govindaraj V, Mugesh G (2019) A Single Atom Change Facilitates the Membrane Transport of Green Fluorescent Proteins in Mammalian Cells. Angew Chem Int Ed 58:7713–7717

    CAS  Google Scholar 

  28. 28.

    Ungati H, Govindaraj V, Mugesh G (2018) The remarkable effect of halogen substitution on the membrane transport of fluorescent molecules in living cells. Angew Chem Int Ed 57:8989–8993

    CAS  Google Scholar 

  29. 29.

    Ungati H, Govindaraj V, Nair CR, Mugesh G (2019) Halogen-mediated membrane transport: an efficient strategy for the enhancement of cellular uptake of synthetic molecules. Chem Eur J 25:3391–3399

    CAS  Google Scholar 

  30. 30.

    Lu Y, Wang Y, Zhu W (2010) Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design. Phys Chem Chem Phys 12:4543–4551

    CAS  Google Scholar 

  31. 31.

    Brent GA (2012) Mechanisms of thyroid hormone action. J Clin Invest 122:3035–3043

    CAS  Google Scholar 

  32. 32.

    Fekete C, Lechan RM (2007) Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol 28:97–114

    CAS  Google Scholar 

  33. 33.

    Lechan RM, Fekete C (2004) Feedback regulation of thyrotropin-releasing hormone (TRH): mechanisms for the non-thyroidal illness syndrome. J Endocrinol Invest 27:105–119

    CAS  Google Scholar 

  34. 34.

    Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94:355–382

    CAS  Google Scholar 

  35. 35.

    Mondal S, Raja K, Schweizer U, Mugesh G (2016) Chemistry and biology in the biosynthesis and action of thyroid hormones. Angew Chem Int Ed 55:7606–7630

    CAS  Google Scholar 

  36. 36.

    Schussler GC (2000) The thyroxine-binding proteins. Thyroid 10:141–149

    CAS  Google Scholar 

  37. 37.

    Berry MJ, Banu L, Larsen PR (1991) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–440

    CAS  Google Scholar 

  38. 38.

    Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89

    CAS  Google Scholar 

  39. 39.

    Kohrle J (2002) Iodothyronine deiodinases. Methods Enzymol 347:125–167

    CAS  Google Scholar 

  40. 40.

    Schweizer U, Steegborn C (2015) New insights into the structure and mechanism of iodothyronine deiodinases. J Mol Endocrinol 55:R37–R52

    CAS  Google Scholar 

  41. 41.

    Davis PJ, Goglia F, Leonard JL (2016) Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 12:111–121

    CAS  Google Scholar 

  42. 42.

    Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    CAS  Google Scholar 

  43. 43.

    Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14:759–780

    CAS  Google Scholar 

  44. 44.

    Wojtczak AC, Cody V, Luft JR, Pangborn W (1996) Structures of human transthyretin complexed with thyroxine at 2.0 Å resolution and 3′,5′-dinitro-N-acetyl-l-thyronine at 2.2 Å resolution. Acta Crystallogr Sect D 52:758–765

    CAS  Google Scholar 

  45. 45.

    Eneqvist T, Lundberg E, Karlsson A, Huang S, Santos CR, Power DM, Sauer-Eriksson AE (2004) High resolution crystal structures of piscine transthyretin reveal different binding modes for triiodothyronine and thyroxine. J Biol Chem 279:26411–26416

    CAS  Google Scholar 

  46. 46.

    Wojtczak A, Luft J, Cody V (1992) Mechanism of molecular recognition. Structural aspects of 3,3′-diiodo-l-thyronine binding to human serum transthyretin. J Biol Chem 267:353–357

    CAS  Google Scholar 

  47. 47.

    Wojtczak AN, Neumann P, Cody V (2001) Structure of a new polymorphic monoclinic form of human transthyretin at 3 Å resolution reveals a mixed complex between unliganded and T4-bound tetramers of TTR. Acta Crystallogr Sect D 57:957–967

    CAS  Google Scholar 

  48. 48.

    Hamilton JA, Steinrauf LK, Braden BC, Liepnieks J, Benson MD, Holmgren G, Sandgren O, Steen L (1993) The X-ray crystal structure refinements of normal human transthyretin and the amyloidogenic Val-30– > Met variant to 1.7-A resolution. J Biol Chem 268:2416–2424

    CAS  Google Scholar 

  49. 49.

    Steinrauf LK, Hamilton JA, Braden BC, Murrell JR, Benson MD (1993) X-ray crystal structure of the Ala-109– > Thr variant of human transthyretin which produces euthyroid hyperthyroxinemia. J Biol Chem 268:2425–2430

    CAS  Google Scholar 

  50. 50.

    Wojtczak AC, Cody V, Luft JR, Pangborn W (2001) Structure of rat transthyretin (rTTR) complex with thyroxine at 2.5 Å resolution: first non-biased insight into thyroxine binding reveals different hormone orientation in two binding sites. Acta Crystallogr Sect D 57:1061–1070

    CAS  Google Scholar 

  51. 51.

    Wu SY, Green WL, Huang WS, Hays MT, Chopra IJ (2005) Alternate pathways of thyroid hormone metabolism. Thyroid 15:943–958

    CAS  Google Scholar 

  52. 52.

    Mondal S, Mugesh G (2017) Novel thyroid hormone analogues, enzyme inhibitors and mimetics, and their action. Mol Cell Endocrinol 458:91–104

    CAS  Google Scholar 

  53. 53.

    Moreno M, De Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F (2008) Metabolic effects of thyroid hormone derivatives. Thyroid 18:239–253

    CAS  Google Scholar 

  54. 54.

    Koehrle J, Auf′mkolk M, Rokos H, Hesch RD, Cody V (1986) Rat liver iodothyronine monodeiodinase. Evaluation of the iodothyronine ligand-binding site. J Biol Chem 261:11613–11622

    CAS  Google Scholar 

  55. 55.

    Shepherdley CA, Klootwijk W, Makabe KW, Visser TJ, Kuiper GG (2004) An ascidian homolog of vertebrate iodothyronine deiodinases. Endocrinology 145:1255–1268

    CAS  Google Scholar 

  56. 56.

    Neumann PC, Cody V, Wojtczak A (2005) Ligand binding at the transthyretin dimer-dimer interface: structure of the transthyretin-T4Ac complex at 2. Å resolution. Acta Crystallogr Sect D 61:1313–1319

    Google Scholar 

  57. 57.

    Muziol TC, Cody V, Luft JR, Pangborn W, Wojtczak A (2001) Complex of rat transthyretin with tetraiodothyroacetic acid refined at 2.1 and 1.8 Å resolution. Acta Biochim Pol 48:877–884

    CAS  Google Scholar 

  58. 58.

    Petitpas I, Petersen CE, Ha CE, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S (2003) Structural basis of albumin–thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc Natl Acad Sci USA 100:6440–6445

    CAS  Google Scholar 

  59. 59.

    Mondal S, Mugesh G (2015) Structure elucidation and characterization of different thyroxine polymorphs. Angew Chem Int Ed 54:10833–10837

    CAS  Google Scholar 

  60. 60.

    Mondal S, Mugesh G (2016) Conformational flexibility and halogen bonding in thyroid hormones and their metabolites. Cryst Growth Des 16:5896–5906

    CAS  Google Scholar 

  61. 61.

    Zhou A, Wei Z, Read RJ, Carrell RW (2006) Structural mechanism for the carriage and release of thyroxine in the blood. Proc Natl Acad Sci USA 103:13321–13326

    CAS  Google Scholar 

  62. 62.

    Qi X, Loiseau F, Chan WL, Yan Y, Wei Z, Milroy LG, Myers RM, Ley SV, Read RJ, Carrell RW, Zhou A (2011) Allosteric modulation of hormone release from thyroxine and corticosteroid-binding globulins. J Biol Chem 286:16163–16173

    CAS  Google Scholar 

  63. 63.

    Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    CAS  Google Scholar 

  64. 64.

    Nagy L, Schwabe JW (2004) Mechanism of the nuclear receptor molecular switch. Trends Biochem Sci 29:317–324

    CAS  Google Scholar 

  65. 65.

    Gullberg H, Rudling M, Salto C, Forrest D, Angelin B, Vennstrom B (2002) Requirement for thyroid hormone receptor beta in T3 regulation of cholesterol metabolism in mice. Mol Endocrinol 16:1767–1777

    CAS  Google Scholar 

  66. 66.

    Mittag J, Davis B, Vujovic M, Arner A, Vennstrom B (2010) Adaptations of the autonomous nervous system controlling heart rate are impaired by a mutant thyroid hormone receptor-alpha1. Endocrinology 151:2388–2395

    CAS  Google Scholar 

  67. 67.

    Nascimento AS, Dias SM, Nunes FM, Aparicio R, Ambrosio AL, Bleicher L, Figueira AC, Santos MA, De Oliveira Neto M, Fischer H, Togashi M, Craievich AF, Garratt RC, Baxter JD, Webb P, Polikarpov I (2006) Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. J Mol Biol 360:586–598

    CAS  Google Scholar 

  68. 68.

    Souza PC, Puhl AC, Martinez L, Aparicio R, Nascimento AS, Figueira AC, Nguyen P, Webb P, Skaf MS, Polikarpov I (2014) Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Mol Endocrinol 28:534–545

    CAS  Google Scholar 

  69. 69.

    Sandler B, Webb P, Apriletti JW, Huber BR, Togashi M, Cunha Lima ST, Juric S, Nilsson S, Wagner R, Fletterick RJ, Baxter JD (2004) Thyroxine-thyroid hormone receptor interactions. J Biol Chem 279:55801–55808

    CAS  Google Scholar 

  70. 70.

    Martinez L, Nascimento AS, Nunes FM, Phillips K, Aparicio R, Dias SM, Figueira AC, Lin JH, Nguyen P, Apriletti JW, Neves FA, Baxter JD, Webb P, Skaf MS, Polikarpov I (2009) Gaining ligand selectivity in thyroid hormone receptors via entropy. Proc Natl Acad Sci USA 106:20717–20722

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Govindasamy Mugesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Giri, D. & Mugesh, G. Halogen Bonding in the Molecular Recognition of Thyroid Hormones and Their Metabolites by Transport Proteins and Thyroid Hormone Receptors. J Indian Inst Sci 100, 231–247 (2020). https://doi.org/10.1007/s41745-019-00153-5

Download citation

Keywords

  • Halogen bond
  • Thyroid hormones
  • Thyroid hormone receptors
  • Transport proteins