Skip to main content
Log in

Linear and Non-linear Analysis of Breakup of Liquid Sheets: a Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Atomization primarily involves interaction between liquid and surrounding gaseous medium resulting in the growth of unstable waves on a distorted liquid surface. There is a huge volume of work surrounding various models and theories involved in investigation of interface dynamics during sheet breakup. The present work summarizes the linear and nonlinear studies for different geometrical shapes of liquid sheet such as planar, annular, and swirling. The techniques involved in deriving nonlinear governing equations such as perturbation technique, multiple scales approach, and long wave approximation have been outlined. Effects of various factors on sheet instability such as viscosity, compressibility, surface temperature difference, unequal velocity, lateral waves and gas swirl have been listed. Research lacunae and scope of future work are presented in the summary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:

Similar content being viewed by others

References

  1. Tanner FX, Feigl K, Kaario O, Windhab EJ (2016) Modeling and simulation of air-assist atomizers with applications to food sprays. Appl Math Model 40:6121–6133

    Google Scholar 

  2. Liu H (1999) Science and engineering of droplets. William Andrew, New York

    Google Scholar 

  3. Le Moyne L (2010) Trends in atomization theory. Int J Spray Combust Dyn 2:49–84

    Google Scholar 

  4. Sirignano W, Mehring C (2000) Review of theory of distortion and disintegration of liquid streams. Prog Energy Combust Sci 26:609–655

    Google Scholar 

  5. Asare HR, Takahashi RK, Hoffman MA (1981) Liquid sheet jet experiments: comparison with linear theory. J Fluids Eng 103:595

    CAS  Google Scholar 

  6. Clark CJ, Dombrowski N (1972) Aerodynamic instability and disintegration of inviscid liquid sheets. Proc R Soc 329:467–478

    CAS  Google Scholar 

  7. Jazayeri SA, Li X (2000) Nonlinear instability of plane liquid sheets. J Fluid Mech 406:281–308

    CAS  Google Scholar 

  8. Kim WT, Mitra SK, Li X, Prociw LA, Hu TCJ (2003) A predictive model for the initial droplet size and velocity distributions in sprays and comparison with experiments. Part Part Syst Charact 20:135–149

    CAS  Google Scholar 

  9. Movahednejad E, Ommi F, Hosseinalipur S, Chen C, Mahdavi S (2001) Application of maximum entropy method for droplet size distribution prediction using instability analysis of liquid sheet. Heat Mass Transf 47:1591–1600

    Google Scholar 

  10. Nath S, Mukhopadhyay A, Sen S, Tharakan TJ (2010) Influence of gas velocity on break up of planar liquid sheets sandwiched between two gas streams. At Sprays 20:983–1003

    Google Scholar 

  11. Dasgupta D, Nath S, Bhanja D (2018) Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation. Phys Fluid 30:044104

    Google Scholar 

  12. Lasheras JC, Hopfinger EJ (2000) Liquid jet instability and atomization in a coaxial gas stream. Annu Rev Fluid Mech 32:275–308

    Google Scholar 

  13. Ibrahim AA, Jog MA (2006) Effect of liquid and air swirl strength and relative rotational direction on the instability of an annular liquid sheet. Acta Mech 133:113–133

    Google Scholar 

  14. Tharakan TJ, Mukhopadhyay A, Datta A, Jog MA (2013) Trends in comprehensive modeling of spray formation. Int J Spray Combust Dyn 5:123–180

    Google Scholar 

  15. Squire HB (1953) Investigation of the instability of a moving liquid film. Br J Appl Phys 4:167–169

    Google Scholar 

  16. Hagerty WW, Shea JF (1955) A study of the stability of plane fluid sheets. J Appl Mech 22:509–514

    Google Scholar 

  17. Taylor G (1959) The dynamics of thin sheets of fluid. II. Waves on fluid sheets. Proc R Soc 253:296–312

    Google Scholar 

  18. Fraser RP, Eisenklam P, Dombrowski N, Hasson D (1962) Drop formation from rapidly moving liquid sheet. AIChE 8:672–680

    CAS  Google Scholar 

  19. Dombrowski N, Hooper PC (1962) The effect of ambient density on drop formation in sprays. Chem Eng Sci 17:291–305

    CAS  Google Scholar 

  20. Luca BLDE, Costa M (1997) Instability of a spatially developing liquid sheet. J Fluid Mech 331:127–144

    Google Scholar 

  21. Rao VN, Ramamurthi K (2009) Internal instability of thin liquid sheets. Phys Fluids 21:092106

    Google Scholar 

  22. Matas JP, Marty S, Cartellier A (2011) Experimental and analytical study of the shear instability of a gas-liquid mixing layer. Phys Fluids 23:094112

    Google Scholar 

  23. Yang L, Du M, Fu Q, Tong M, Wang C (2015) Temporal instability of a power-law planar liquid sheet. J Propuls Power 31:286–293

    CAS  Google Scholar 

  24. Dombrowski N, Johns WR (1963) The aerodynamic instability and disintegration of viscous liquid sheets. Chem Eng Sci 18:203–214

    CAS  Google Scholar 

  25. Lin SP, Lian ZW, Creighton BJ (1990) Absolute and convective instability of a viscous liquid sheet. J Fluid Mech 220:673–689

    CAS  Google Scholar 

  26. Li X, Tankin RS (1991) On the temporal instability of a two-dimensional viscous liquid sheet. J Fluid Mech 226:425–443

    CAS  Google Scholar 

  27. Li X (1993) Spatial instability of plane liquid sheet. Chem Eng Sci 48:2973–2981

    CAS  Google Scholar 

  28. Ibrahim EA (1995) Spatial instability of a viscous liquid sheet. J Propuls Power 11:146

    CAS  Google Scholar 

  29. Cousin J, Dumouchel C (1996) Effect of viscosity on the linear instability of a flat liquid sheet. At Sprays 6:563–576

    CAS  Google Scholar 

  30. Ibrahim EA, Akpan ET (1996) Three-dimensional instability of viscous liquid sheet. At Sprays 6:649–665

    Google Scholar 

  31. Ibrahim EA, Akpan E (1998) Liquid sheet instability. Acta Mech 167:153–167

    Google Scholar 

  32. Barreras F, Lozano A, Dopazo C (2001) Viscous linear instability analysis of the viscous longitudinal perturbation on an air-blasted liquid sheet. At Sprays 11:139–154

    CAS  Google Scholar 

  33. Heislbetz B, Madlener K, Ciezki HK (2007) Breakup characteristics of a Newtonian liquid sheet formed by a doublet impinging jet injector. In: 43rd AIAA Joint Propulsion Conference

  34. Altimira M, Rivas A, Ramos JC, Anton R (2010) Linear spatial instability of viscous flow of a liquid sheet through gas. Phys Fluids 22:74103

    Google Scholar 

  35. Matas J (2015) Inviscid versus viscous instability mechanism of an air—water mixing layer. J Fluid Mech 768:375–387

    CAS  Google Scholar 

  36. Subramaniam K, Parthasarathy RN (1999) Effects of confinement on the temporal instability of gas jets injected in viscous liquids. Phys Fluids 89:1998–2001

    Google Scholar 

  37. Juniper MM (2006) The effect of confinement on the stability of two-dimensional shear flows. J Fluid Mech 565:171–195

    Google Scholar 

  38. Rees SJ, Juniper MM (2010) The effect of confinement on the stability of viscous planar jets and wakes. J Fluid Mech 656:309–336

    CAS  Google Scholar 

  39. Mohanta L, Cheung F, Bajorek SM (2016) Stability of coaxial jets confined in a tube with heat and mass transfer. Physica A 443:333–346

    CAS  Google Scholar 

  40. Li X (1994) On the instability of plane liquid sheets in two gas streams of unequal velocities. Acta Mech 106:137–156

    Google Scholar 

  41. Tharakan TJ, Ramamurthi K (2005) Growth of longitudinal waves in plane liquid sheets having lateral wave modes when exposed to two gas streams of unequal velocities. At Sprays 15:181–200

    Google Scholar 

  42. Yang L, Xu B, Fu Q (2012) Linear instability analysis of planar non-newtonian liquid sheets in two gas streams of unequal velocities. J Non Newton Fluid Mech 167:50–58

    Google Scholar 

  43. Nath S, Mukhopadhyay A, Datta A, Sen S (2012) Analysis of disintegration of planar liquid sheet sandwiched between gas streams with unequal velocities and resulting spray formation. Triennial international conference on liquid atomization and spray systems vol 12 pp 50–8

  44. Dasgupta D, Nath S, Bhanja D (2017) Linear stability analysis of planar liquid sheet with unequal gas velocities confined between two solid walls. International conference on functional materials, characterization, solid state physics, power, thermal and combustion energy vol 20113

  45. Ibrahim EA, Jackson SL (1996) Spatial instability of a liquid sheet in a compressible gas. J Colloid Interface Sci 180:629–631

    CAS  Google Scholar 

  46. Ibrahim EA (2010) Effects of compressibility on the instability of liquid sheets. Chem Eng Commun 161:37–41

    Google Scholar 

  47. Cao J, Li X (2000) Stability of plane liquid sheets in compressible gas streams. J Propuls Power 16:623–627

    CAS  Google Scholar 

  48. Tharakan TJ, Ramamurthi K (2010) Influence of liquid and gas compressibility on growth of thin liquid sheets. Fluid Dyn Res 42:035508

    Google Scholar 

  49. Yang HQ (1992) Interfacial instability between a liquid film and the surrounding compressible gas. 30th aerospace sciences meeting and exhibit

  50. Crapper GD, Dombrowski N (1975) Kelvin–Helmholtz wave growth on cylindrical sheets. J Fluid Mech 68:497–502

    Google Scholar 

  51. Meyer J, Weihs D (1987) Capillary instability of an annular liquid jet. J Fluid Mech 179:531

    CAS  Google Scholar 

  52. Biswas G, Som SK, Gupta AS (1985) Instability of a moving cylindrical liquid sheet. J Fluid Eng 107:451–454

    Google Scholar 

  53. Shen J, Li X (1996) Instability of an annular viscous liquid jet. Acta Mech 114:167–183

    Google Scholar 

  54. Shen J, Li X (1996) Breakup of annular viscous liquid jets in two gas streams. J Propuls Power 12:752

    Google Scholar 

  55. Shijun Y, Maozhao X, Baixin C (1996) The breakup and atomization of a viscous liquid jet. Acta Mech Sin 12:124

    Google Scholar 

  56. Yang L, Fu Q (2012) Stability of confined gas—liquid shear flows in recessed shear coaxial injectors. J Propuls Power 28:1413

    CAS  Google Scholar 

  57. Ponstein J (1959) Instability of rotating cylindrical jets. Appl Sci Res A 8:425

    Google Scholar 

  58. Panchagnula MV, Sojka PE, Santangelo PJ (1996) On the three dimensional instability of a swirling, annular, inviscid liquid sheet subject to unequal gas velocities. Phys Fluids 8:3300

    CAS  Google Scholar 

  59. Liao Y, Sakman AT, Jeng SM, Jog MA, Benjamin MA (1999) A comprehensive model to predict simplex atomizer performance. J Eng Gas Turbine Power 121:285

    Google Scholar 

  60. Mehring C, Sirignano WA (2001) Nonlinear capillary waves on swirling, axisymmetric free liquid. Int J Multiph Flow 27:1707–1734

    CAS  Google Scholar 

  61. Liao Y, Jeng SM, Jog MA (2000) Instability of an annular liquid sheet surrounded by swirling airstreams. AIAA J 38:453

    CAS  Google Scholar 

  62. Liao Y, Jeng SM, Jog MA (2001) Advanced sub-model for airblast atomizers. J Prop 17:411

    Google Scholar 

  63. Ibrahim AA, Jog MA, Jeng SM (2006) Effect of liquid swirl velocity profile on the instability of a swirling annular liquid sheet. At Sprays 16:237

    Google Scholar 

  64. Du Q, Li X (2005) Effect of gas stream swirls on the instability of viscous annular liquid jets. Acta Mech 176:61–81

    Google Scholar 

  65. Du Q, Ning LIU, Jun YIN (2008) The study on the relationship between breakup modes and gas-liquid interfaces. Chin Sci Bull 53:2898–2906

    CAS  Google Scholar 

  66. Herrero EP, Martín EM, Valle D, Galán MA (2007) Instability study of a swirling annular liquid sheet of polymer produced by air-blast atomization. Chem Eng J 133:69–77

    CAS  Google Scholar 

  67. Chatterjee S, Samanta S, Mukhopadhyay A, Ghosh K, Sen S (2012) Effect of a confined outer air stream on instability of an annular liquid sheet exposed to gas flow. Proceedings of ASME 2012 gas turbine India conference pp 1–10

  68. Mahdavi S, Movahednejad E, Ommi F, Hosseinalipur S (2013) Estimation of the breakup length for the annular and the round liquid jet using linear stability analysis. IJST Trans Mech Eng 37:217–232

    Google Scholar 

  69. Yan K, Ning Z, Lü M, Sun C, Fu J, Li Y, Yan K, Ning Z, Lü M, Sun C, Fu J, Li Y (2016) Spatial instability in annular swirling viscous liquid sheet. Phys Fluids 27:24101

    Google Scholar 

  70. Vadivukkarasan M, Panchagnula MV (2017) Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet. J Fluid Mech 812:152–177

    Google Scholar 

  71. Rostami E, Ommi F, Mirmohammadi A, Khodayari H (2016) Effect of gas-to-liquid density ratios at different liquid viscosity on the atomization of the air-blast atomizer. Aust J Mech Eng 15:1–12

    Google Scholar 

  72. Mitra SK, Li X, Renksizbulut M (2001) On the breakup of viscous liquid sheets by dual-mode linear analysis. J Propuls Power 17:728–735

    Google Scholar 

  73. Fu Q, Yang L, Qu Y, Gu B (2010) Linear stability analysis of a conical liquid sheet. J Propuls Power 26:955

    Google Scholar 

  74. Rangel RH, Sirignano WA (1991) The linear and nonlinear shear instability of a fluid sheet. Phys Fluids 10:2392–2400

    Google Scholar 

  75. Tharakan TJ, Ramamurthi K, Balakrishnan M (2002) Nonlinear breakup of thin liquid sheets. Acta Mech 156:29–46

    Google Scholar 

  76. Yoshinaga T, Kan K (2006) Breakup of a falling liquid sheet caused by amplified modulational waves. Fluid Dyn Res 38:313–338

    Google Scholar 

  77. Chuech SG (2006) spatial instability of a viscous liquid sheet. Int J Numer Methods Fluids 50:1461–1474

    Google Scholar 

  78. Cao JM, Feng ZY, Jian XP, Li GB, Chen ZW, Zhang QX, Wang L (2010) Nonlinear stability analysis of a liquid sheet injected from a plane slot nozzle, The 6th international symposium on multiphase flow, heat mass transfer and energy conversion

  79. Yang L, Wang C, Fu Q, Du M, Tong M (2013) Weakly nonlinear instability of planar viscous sheets. J Fluid Mech 735:249–287

    Google Scholar 

  80. Wang C, Yang L, Xie L, Chen P (2015) Weakly nonlinear instability of planar viscoelastic sheets. Phys Fluids 27:13103

    Google Scholar 

  81. Kan K, Yoshinaga T (2007) Instability of a planar liquid sheet with surrounding fluids between two parallel walls. Fluid Dyn Res 39:389–412

    Google Scholar 

  82. Nath S, Mukhopadhyay A, Datta A (1873) Effect of confinement on breakup of planar liquid sheets sandwiched between two gas streams and resulting spray characteristics. Fluid Dyn Res 46:15511

    Google Scholar 

  83. Yang L, Chen P, Wang C (2014) Effect of gas velocity on the weakly nonlinear instability of a planar viscous sheet. Phys Fluids 26:74106

    Google Scholar 

  84. Yoshinaga T, Uchiyama T (2001) Behavior of a free liquid sheet subject to a temperature difference between both surfaces. J Phys Soc Jpn 70:103–110

    CAS  Google Scholar 

  85. Yoshinaga T, Yoshida T (2003) Nonlinear wave behavior of the sinuous mode on a free liquid sheet with variable surface tension and viscosity. J Phys Soc Jpn 72:3113–3122

    CAS  Google Scholar 

  86. Prévost M, Gallez D (1986) Nonlinear rupture of thin free liquid films. J Chem Phys 84:4043

    Google Scholar 

  87. Erneux T, Davis SH (1993) Nonlinear rupture of free films. Phys Fluids A Fluid Dyn 5:1117

    CAS  Google Scholar 

  88. Sharma A, Kishore CS, Salaniwal S, Ruckenstein E (1995) Nonlinear stability and rupture of ultrathin free films. Phys Fluids 7:1832–1840

    CAS  Google Scholar 

  89. Hwang CC, Lin C, Hou DC, Uen WY, Lin J (1998) Nonlinear rupture theory of a thin liquid film with insoluble surfactant. Trans ASME 120:598–604

    CAS  Google Scholar 

  90. Lin C, Hwang C, Uen W (2000) A nonlinear rupture theory of thin liquid films with soluble surfactant. J Colloid Interface Sci 231:379–393

    CAS  Google Scholar 

  91. Wang C, Yang L, Ye H (2015) Nonlinear dual-mode instability of planar liquid sheets. J Fluid Mech 778:621–652

    CAS  Google Scholar 

  92. Mehring C, Sirignano WA (2000) Axisymmetric capillary waves on thin annular liquid sheets. I. Temporal stability. Phys Fluid 12:1417

    CAS  Google Scholar 

  93. Yoshinaga T (2012) Instability and breakup of a gas-cored viscous annular jet. Nonlinear Accoustics 122:119–122

    Google Scholar 

  94. Yoshinaga T, Yamamoto K (2011) Nonlinear instability and breakup of a viscous compound liquid jet. J Fluid Sci Technol 6:477–486

    Google Scholar 

  95. Yang L, Du M, Fu Q (2014) Stability of an annular power-law liquid sheet. J Mech Eng Sci 229:2750–2759

    Google Scholar 

  96. Yan K, Ning Z, Lü M, Sun C, Fu J, Li Y (2015) Interface instability mechanism of an annular viscous liquid sheet exposed to axially moving inner and outer gas. Eur J Mech B Fluids 52:185–190

    Google Scholar 

  97. Ibrahim AA, Jog MA (2008) Nonlinear instability of an annular liquid sheet exposed to gas flow. Int J Multiph Flow 34:647–664

    CAS  Google Scholar 

  98. Ibrahim AA, Jog MA (2013) Nonlinear breakup model for a liquid sheet emanating from a pressure-swirl atomizer. J Eng Gas Turbine Power 129:945–953

    Google Scholar 

  99. Yan K, Jog MA, Ning Z (2013) Nonlinear spatial instability of an annular swirling viscous liquid sheet. Acta Mech 224:3071

    Google Scholar 

  100. Zakaria K, Sirwah MA, Adham M (2013) Nonlinear evolution of a column swirling jet. Zeitschrift für Angew Math und Phys 64:811–830

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achintya Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, D., Nath, S. & Mukhopadhyay, A. Linear and Non-linear Analysis of Breakup of Liquid Sheets: a Review. J Indian Inst Sci 99, 59–75 (2019). https://doi.org/10.1007/s41745-018-0093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-018-0093-1

Keywords

Navigation