Dyke Swarms in the Dharwar Craton: A Key to Understanding the Late Archean to Early Proterozoic Cratonic Correlations


Mafic dyke swarms are abundantly distributed in the Archean Dharwar craton. Previous studies have focused mainly on the major mafic dyke swarms in EDC; however, those in the WDC are yet to be studied in detail. Here we present preliminary geochemical data for the dykes in the Tiptur area, WDC and compare them with the dyke swarms in the EDC. Petrological studies indicate that the dykes in the Tiptur area fall into two distinct groups. The NW–SE trending dolerite dykes are unaltered, with characteristic ophitic textures and are geochemically comparable to 2.3 Ga EDC dykes. In contrast, the NE–SW trending meta-doleritic dykes showed high degree of alteration. The difference in petrography, major, trace and rare earth element geochemistry between the dolerites and meta-dolerites lead to a preliminary inference that these two suits of rocks might not be co-genetic. Meta-dolerites have not been reported from the EDC and it is possible to assume that they are a part of an earlier event, restricted in WDC, that might have emplaced prior to the amalgamation of WDC and EDC. In a global perspective, we compare our results with those reported in Archean cratons during late Archean to early Proterozoic around the world to constrain similarities that can lead to understanding the global scale magmatic activity and to aid in correlations between cratons.

This is a preview of subscription content, log in to check access.

Figure 1:

(Modified from French and Heaman21). Marked area is Tiptur dyke swarm, one of the major swarms in Western Dharwar Craton.

Figure 2:

(Modified after Geological Survey of India Map 1997).

Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Normalizing values are taken from McDonough and Sun36.

Figure 10:
Figure 11:

(Modified from Ernst and Buchan16), Dyke swarms in the Yilgarn Craton, Western Australia (Modified from Pigeon and Cook44) and Dharwar craton, Southern Indian shield (Modified from French and Heaman21).


  1. 1.

    Bateman R, Costa S, Swe T, Lambert D (2001) Archaean mafic magmatism in the Kalgoorlie area of the Yilgarn Craton, Western Australia: a geochemical and Nd isotopic study of the petrogenetic and tectonic evolution of a greenstone belt. Precambr Res 108(1):75–112

    CAS  Article  Google Scholar 

  2. 2.

    Belica ME, Piispa EJ, Meert JG, Pesonen LJ, Plado J, Pandit MK, Celestino M (2014) Paleoproterozoic mafic dyke swarms from the Dharwar craton; paleomagnetic poles for India from 2.37 to 1.88 Ga and rethinking the Columbia supercontinent. Precambr Res 244:100–122

    CAS  Article  Google Scholar 

  3. 3.

    Bleeker W (2003) The late archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134

    CAS  Article  Google Scholar 

  4. 4.

    Bouhallier H, Chardon D, Choukroune P (1995) Strain patterns in archaean dome-and-basin structures: The Dharwar craton (Karnataka, South India). Earth Planet Sci Lett 135(1–4):57–75

    CAS  Article  Google Scholar 

  5. 5.

    Borah K, Rai SS, Gupta S, Prakasam KS, Kumar S, Sivaram K (2014) Preserved and modified mid-archean crustal blocks in Dharwar craton: seismological evidence. Precambr Res 246:16–34

    CAS  Article  Google Scholar 

  6. 6.

    Bryan SE, Ernst RE (2008) Revised definition of large igneous provinces (LIPs). Earth Sci Rev 86(1–4):175–202

    Article  Google Scholar 

  7. 7.

    Chardon D, Jayananda M, Chetty TR, Peucat JJ (2008) Precambrian continental strain and shear zone patterns: South Indian case. J Geophys Res Solid Earth 113(B8):B08402. https://doi.org/10.1029/2007JB005299

    Article  Google Scholar 

  8. 8.

    Chardon D, Jayananda M, Peucat JJ (2011) Lateral constrictional flow of hot orogenic crust: insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux. Geochem Geophys Geosyst. https://doi.org/10.1029/2010GC003398

    Article  Google Scholar 

  9. 9.

    Chadwick B, Vasudev VN, Hegde GV (2000) The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence. Precambr Res 99(1–2):91–111

    CAS  Article  Google Scholar 

  10. 10.

    Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys 32(1):1–36

    Article  Google Scholar 

  11. 11.

    Coffin MF, Eldholm O (2005) Large igneous provinces. Encycl Geol 21:315–323

    Article  Google Scholar 

  12. 12.

    de Kock MO, Evans DA, Beukes NJ (2009) Validating the existence of Vaalbara in the Neoarchean. Precambr Res 174(1–2):145–154

    Article  Google Scholar 

  13. 13.

    Devaraju T, Laajoki L, Dmitry Z, Khanadali S, Ugarkar G (1995) Neo-proterozoic dyke swarms of southern Karnataka: Part II: geochemistry, oxygen isotope composition, Rb–Sr age and petrogenesis. Mem Geolo Soc India 33:267–306

    Google Scholar 

  14. 14.

    Dey S (2013) Evolution of Archaean crust in the Dharwar craton: The Nd isotope record. Precambr Res 227:227–246

    CAS  Article  Google Scholar 

  15. 15.

    Doehler JS, Heaman LM (1998) 2.41 Ga U–Pb Baddeleyite ages for two gabbroic dykes from the Widgiemooltha swarm, Western Australia: a Yilgarn–Lewisian connection. In Geological Society of America 1998 Annual Meeting. Abstr Prog, Geol Soc Am 30:291–292

    Google Scholar 

  16. 16.

    Ernst RE, Buchan KL (2001) The use of mafic dyke swarms in identifying and locating mantle plumes. In: Ernst RE, Buchan KL (eds) Mantle plumes: their identification through time, vol 352. Goeological Society of America Special Paper, pp 247–265

    Google Scholar 

  17. 17.

    Ernst RE, Buchan KL, Campbell IH (2005) Frontiers in large igneous province precambrian research. Lithos 79:271–297

    CAS  Article  Google Scholar 

  18. 18.

    Ernst RE, Head JW, Parfitt E, Grosfils E, Wilson L (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci Rev 39:1–58

    Article  Google Scholar 

  19. 19.

    Ernst RE, Srivastava RK (2008) India’s place in the proterozoic world: constraints from the large Igneous Province (LIP) record Indian dykes. In: Srivastava RK, Sivaji CH, Chalapathi Rao NV (eds) Geochemistry, geophysics, and geochronology. Narosa Publishing House Pvt, Ltd, New Delhi, pp 41–56

    Google Scholar 

  20. 20.

    Evans ME (1968) Magnetization of Dikes: a study of the paleomagnetism of the Widgiemooltha dike suite, Western Australia. J Geophys Res 73:3261–3270

    Article  Google Scholar 

  21. 21.

    French JE, Heaman LM (2010) Precise U–Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: Implications for the existence of the Neoarchean supercraton Sclavia. Precambr Res 183:416–441

    CAS  Article  Google Scholar 

  22. 22.

    Gupta S, Rai SS, Prakasam KS, Srinagesh D, Bansal BK, Chadha RK, Priestley K, Gaur VK (2003) The nature of the crust in southern India: implications for Precambrian crustal evolution. Geophys Res Lett. https://doi.org/10.1029/2002GL016770

    Article  Google Scholar 

  23. 23.

    Halls HC, Fahrin WF (1987) Mafic dyke swarms. Geol Assoc Can Spec Pap 34:1–10

    Google Scholar 

  24. 24.

    Halls HC, Kumar A, Srinivasan R, Hamilton MA (2007) Paleomagnetism and U–Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga. Precambr Res 155:47–68

    CAS  Article  Google Scholar 

  25. 25.

    Hokada T, Horie K, Satish-Kumar M, Ueno Y, Nasheeth A, Mishima K, Shiraishi K (2013) An appraisal of Archaean supracrustal sequences in Chitradurga schist belt, western Dharwar Craton, southern India. Precambr Res 227:99–119

    CAS  Article  Google Scholar 

  26. 26.

    Hou G, Santosh M, Qian X, Lister GS, Li J (2008) Configuration of the Late Paleoproterozoic supercontinent Columbia: insights from radiating mafic dyke swarms. Gondwana Res 14:395–409

    Article  Google Scholar 

  27. 27.

    Jayananda M, Chardon D, Peucat J, Fanning CM (2015) Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes. Precambr Res 268:295–322

    CAS  Article  Google Scholar 

  28. 28.

    Jayananda M, Santosh M, Aadhiseshan KR (2018) Formation of Archean (3600–2500 Ma) continental crust in the Dharwar craton, southern India. Earth Sci Rev 18:12–42

    Google Scholar 

  29. 29.

    Kumar A, Hamilton MA, Halls HC (2012) A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, southern India. Geochem Geophys Geosyst. https://doi.org/10.1029/2011GC003926

    Article  Google Scholar 

  30. 30.

    Kumar A, Nagaraju E, Besse J, Rao YJJB (2012) New age, geochemical and paleomagnetic data on a 2.21 Ga dyke swarm from south India: Constraints on Paleoproterozoic reconstruction. Precambr Res 220–221:123–138

    Article  Google Scholar 

  31. 31.

    Kumar A, Parashuramulu V, Nagaraju E (2015) A 2082 Ma radiating dyke swarm in the Eastern Dharwar Craton, southern India and its implications to Cuddapah basin formation. Precambr Res 266:490–505

    CAS  Article  Google Scholar 

  32. 32.

    Kullerud K, Skjerlie KP, Corfu F, Jesús D (2006) The 2.40 Ga Ringvassøy mafic dykes, West Troms Basement Complex, Norway: the concluding act of early Palaeoproterozoic continental breakup. Precambr Res 150(3–4):183–200

    CAS  Article  Google Scholar 

  33. 33.

    Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms, II edn. Cambridge University Press, Cambridge, p 236

    Google Scholar 

  34. 34.

    Manikyamba C, Kerrich R (2012) Eastern Dharwar craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geosci Front 3(3):225–240

    CAS  Article  Google Scholar 

  35. 35.

    McDonough WF, Sun SS, Ringwood AE, Jagoutz E, Hofmann AW (1992) K, Rb and Cs in the earth and moon and the evolution of the earth’s mantle. Geochimica Cosmochimica Acta 56:1001–1012

    CAS  Article  Google Scholar 

  36. 36.

    McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    CAS  Article  Google Scholar 

  37. 37.

    Meert JG, Pandit MK (2015) The archaean and proterozoic history of peninsular india: tectonic framework for precambrian sedimentary basins in India. In: Mazumder R, Eriksson PG (eds) Precambrian basins of India: stratigraphic and tectonic context. Geological society memoir no 43. The Geological Society, London, pp 29–54. https://doi.org/10.1144/M43.3

    Google Scholar 

  38. 38.

    Nagaraju E, Parashuramulu V, Kumar A, Sarma DS (2018) Paleomagnetism and geochronological studies on a 450 km long 2216 Ma dyke from the Dharwar craton, southern India. Phys Earth Planet Inter 274:222–231

    CAS  Article  Google Scholar 

  39. 39.

    Naqvi SM, Rao VD, Satyanarayana K, Hussain SM (1974) Geochemistry of post-Dharwar basic dikes and the Precambrian crustal evolution of peninsular India. Geol Mag 111(3):229–236

    CAS  Article  Google Scholar 

  40. 40.

    Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford University Press, New York

    Google Scholar 

  41. 41.

    Pandey BK, Gupta JN, Sarma KJ, Sastry CA (1997) Sm–Nd, Pb–Pb and Rb–Sr geochronology and petrogenesis of the mafic dyke swarm of Mahbubnagar, South India: implications for Paleoproterozoic crustal evolution of the Eastern Dharwar Craton. Precambr Res 84:181–196

    CAS  Article  Google Scholar 

  42. 42.

    Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    CAS  Article  Google Scholar 

  43. 43.

    Peucat JJ, Jayananda M, Chardon D, Capdevila R, Fanning CM, Paquette JL (2013) The lower crust of the Dharwar Craton, Southern India: patchwork of archean granulitic domains. Precambr Res 227:4–28

    CAS  Article  Google Scholar 

  44. 44.

    Pigeon RT, Cook TJF (2003) 1214 ± 5 Ma dyke from the darling range, southwestern Yilgarn Craton, Western Australia. Aust J Earth Sci 50:769–777

    Article  Google Scholar 

  45. 45.

    Piispa EJ, Smirnov AV, Pesonen LJ, Lingadevaru M, Anantha Murthy KS, Devaraju TC (2011) An integrated study of proterozoic dykes, Dharwar Craton, Southern India. In: Dyke swarms: keys for geodynamic interpretation. Springer, Berlin, Heidelberg, pp 33–45

    Google Scholar 

  46. 46.

    Radhakrishna T, Krishnendu NR, Balasubramonian G (2013) Palaeoproterozoic Indian shield in the global continental assembly: Evidence from the palaeomagnetism of mafic dyke swarms. Earth Sci Rev 126:370–389

    CAS  Article  Google Scholar 

  47. 47.

    Ramakrishnan M (2009) Precambrian mafic magmatism in the western Dharwar craton, southern India. J Geol Soc India 73(1):101–116

    CAS  Article  Google Scholar 

  48. 48.

    Rao YB, Janardhan AS, Vijaya Kumar T, Narayana B, Dayal AM, Taylor PN, Chetty TRK (2003) Sm–Nd model ages and Rb–Sr isotope systematics of charnockites and gneisses across the Cauvery Shear Zone, southern India: implications for the Archaean–Neoproterozoic boundary in the southern granulite terrain. In: Ramakrishnan M (ed) Tectonics of southern granulite terrain, vol 50. Geological Society of India Memoir, pp 297–317

    Google Scholar 

  49. 49.

    Rao YB, Sivaraman TV, Pantulu GVC, Gopalan K, Naqvi SM (1992) Rb–Sr ages of late Archean metavolcanics and granites, Dharwar craton, South India and evidence for early Proterozoic thermotectonic event (s). Precambr Res 59(1–2):145–170

    CAS  Google Scholar 

  50. 50.

    Rogers JJ (1996) A history of continents in the past three billion years. J Geol 104(1):91–107

    Article  Google Scholar 

  51. 51.

    Rogers JJW, Santosh M (2003) Supercontinents in Earth History. Gondwana Res 3:357–368

    Article  Google Scholar 

  52. 52.

    Samal AK, Srivastava RK, Sinha LK (2015) ArcGIS studies and field relationships of Paleoproterozoic mafic dyke swarms from the south of Devarakonda area, Eastern Dharwar Craton, southern India: Implications for their relative ages. J Earth Syst Sci 124(5):1075–1084

    CAS  Article  Google Scholar 

  53. 53.

    Srivastava RK, Jayananda M, Gautam GC, Gireesh V, Samal AK (2014) Geochemistry of an ENE–WSW to NE–SW trending ~ 2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: Does it represent a single magmatic event? Chem Erde 74:251–265

    CAS  Article  Google Scholar 

  54. 54.

    Srivastava RK, Samal AK, Gautam GC (2014) Geochemical characteristics and petrogenesis of four Palaeoproterozoic mafic dike swarms and associated large igneous provinces from the eastern Dharwar craton, India. Int Geol Rev. https://doi.org/10.1080/00206814.2014.938366

    Article  Google Scholar 

  55. 55.

    Srivastava RK, Mondal SK, Balaram V, Gautam GC (2010) PGE geochemistry of low-Ti high-Mg siliceous mafic rocks within the Archaean Central Indian Bastar Craton: Implications for magma fractionation. Mineral Petrol 98:329–345

    CAS  Article  Google Scholar 

  56. 56.

    Srivastava RK, Sivaji C, Chalapathi Rao NV (2008) Indian dyke through space and time: retrospect and prospect. In: Indian dyke: geochemistry, geophysics and geochronology. Narosa Publishing House Pvt Ltd, New Delhi, pp 1–18

    Google Scholar 

  57. 57.

    Sun SS, McDonough WS (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  58. 58.

    Swami Nath J, Ramakrishnan M (1981) Early Precambrian supracrustals of Southern Karnataka. Mem Geol Surv India 112:363

    Google Scholar 

  59. 59.

    Weaver BL, Tarney J (1983) Elemental depletion in Archaean granulite facies rocks. Migmatites, melting and metamorphism. Shiva Nantwich, Nantwich, pp 250–263

    Google Scholar 

Download references


We thank Prof. M. Santosh and Dr. K. Sajeev for their invitation to contribute to the special issue. We also express our sincere thanks to Dr. Toshiro Takahashi and Ms. Rikako Nohara for the help rendered during the geochemical analysis of dykes at Niigata University. Discussions with Dr. Sajeev Krishnan (IISc) and colleagues at Niigata University have helped to build up the concept on the significance of dykes in a global perspective. SAS acknowledges Japanese Government (Monbukagakusho) scholarship for PhD program at Niigata University. This study was supported by the Grant-in-Aid for Scientific Research on Innovative Areas No. JP15H05831 from the Ministry of Education, Culture, Sports, Science and Technology, Japan to MS-K.

Author information



Corresponding author

Correspondence to A. S. Silpa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silpa, A.S., Satish-Kumar, M. Dyke Swarms in the Dharwar Craton: A Key to Understanding the Late Archean to Early Proterozoic Cratonic Correlations. J Indian Inst Sci 98, 365–378 (2018). https://doi.org/10.1007/s41745-018-0090-4

Download citation


  • Dyke Swarms
  • Western Dharwar Craton (WDC)
  • Eastern Dharwar Craton (EDC)
  • Dolerite
  • Large Igneous Province (LIPs)