Advertisement

Journal of the Indian Institute of Science

, Volume 97, Issue 4, pp 415–421 | Cite as

Processing of Odor Mixtures in the Mammalian Olfactory System

  • Venkatesh N. Murthy
  • Dan RokniEmail author
Review Article
  • 153 Downloads

Abstract

Animals rarely encounter odors in isolation, and their olfactory systems generally operate in the context of complex mixtures of odorants. Individual objects typically emit a multitude of volatile chemicals that become their signature for identification. In addition, chemicals emitted from multiple objects mix in the air before reaching the nose. There is great interest, therefore, in understanding how mixtures are processed by the olfactory system to allow perceiving objects and segregating them from background odors. Studies comparing the neural responses to single odorants and their mixtures show that it is often not easy to predict the mixture response from the components, suggesting that cross-odorant interactions take place at multiple levels of the mammalian olfactory system. Experiments that relate cross-odorant interactions to perception may elucidate how mixture processing underlies object identification and background segregation.

References

  1. 1.
    Abaffy T, Matsunami H, Luetje CW (2006) Functional analysis of a mammalian odorant receptor subfamily. J Neurochem 97:1506–1518CrossRefGoogle Scholar
  2. 2.
    Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3:1248–1255CrossRefGoogle Scholar
  3. 3.
    Aungst JL, Heyward PM, Puche AC, Karnup SV, Hayar A, Szabo G, Shipley MT (2003) Centre–surround inhibition among olfactory bulb glomeruli. Nature 426:623–629CrossRefGoogle Scholar
  4. 4.
    Axel R (1995) The molecular logic of smell. Sci Am 273:154–159CrossRefGoogle Scholar
  5. 5.
    Banerjee A, Marbach F, Anselmi F, Koh MS, Davis MB, Garcia da Silva P, Delevich K, Oyibo HK, Gupta P, Li B et al (2015) An interglomerular circuit gates glomerular output and implements gain control in the mouse olfactory bulb. Neuron 87:193–207CrossRefGoogle Scholar
  6. 6.
    Barnes DC, Hofacer RD, Zaman AR, Rennaker RL, Wilson DA (2008) Olfactory perceptual stability and discrimination. Nat Neurosci 11:1378–1380CrossRefGoogle Scholar
  7. 7.
    Belluscio L, Katz LC (2001) Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs. J Neurosci 21:2113–2122CrossRefGoogle Scholar
  8. 8.
    Boyd AM, Sturgill JF, Poo C, Isaacson JS (2012) Cortical feedback control of olfactory bulb circuits. Neuron 76:1161–1174CrossRefGoogle Scholar
  9. 9.
    Cain WS (1975) Odor intensity: mixtures and masking. Chem Senses Flavor 1:339–352CrossRefGoogle Scholar
  10. 10.
    Chapuis J, Wilson DA (2012) Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity. Nat Neurosci 15:155–161CrossRefGoogle Scholar
  11. 11.
    Choi GB, Stettler DD, Kallman BR, Bhaskar ST, Fleischmann A, Axel R (2011) Driving opposing behaviors with ensembles of piriform neurons. Cell 146:1004–1015CrossRefGoogle Scholar
  12. 12.
    Cleland TA (2014) Construction of odor representations by olfactory bulb microcircuits. Prog Brain Res 208:177–203.  https://doi.org/10.1016/B978-0-444-63350-7.00007-3 CrossRefGoogle Scholar
  13. 13.
    Coureaud G, Thomas-Danguin T, Le Berre E, Schaal B (2008) Perception of odor blending mixtures in the newborn rabbit. Physiol Behav 95:194–199CrossRefGoogle Scholar
  14. 14.
    Davison IG, Katz LC (2007) Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb. J Neurosci 27:2091–2101CrossRefGoogle Scholar
  15. 15.
    Deisig N, Giurfa M, Sandoz JC (2010) Antennal lobe processing increases separability of odor mixture representations in the Honeybee. J Neurophysiol 103:2185–2194CrossRefGoogle Scholar
  16. 16.
    Doucette W, Restrepo D (2008) Profound context-dependent plasticity of mitral cell responses in olfactory bulb. PLoS Biol 6:e258CrossRefGoogle Scholar
  17. 17.
    Duchamp-Viret P, Duchamp A, Chaput MA (2003) Single olfactory sensory neurons simultaneously integrate the components of an odour mixture. Eur J Neurosci 18:2690–2696CrossRefGoogle Scholar
  18. 18.
    Effmert U, Große J, Röse USR, Ehrig F, Kägi R, Piechulla B (2005) Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Am J Bot 92:2–12CrossRefGoogle Scholar
  19. 19.
    Fantana AL, Soucy ER, Meister M (2008) Rat olfactory bulb mitral cells receive sparse glomerular inputs. Neuron 59:802–814CrossRefGoogle Scholar
  20. 20.
    Fletcher ML (2011) Analytical processing of binary mixture information by olfactory bulb glomeruli. PLoS One 6:e29360CrossRefGoogle Scholar
  21. 21.
    Franks KM, Russo MJ, Sosulski DL, Mulligan AA, Siegelbaum SA, Axel R (2011) Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72:49–56CrossRefGoogle Scholar
  22. 22.
    Fu X, Yan Y, Xu PS, Geerlof-Vidavsky I, Chong W, Gross ML, Holy TE (2015) A molecular code for identity in the vomeronasal system. Cell 163:313–323CrossRefGoogle Scholar
  23. 23.
    Giessel AJ, Datta SR (2014) Olfactory maps, circuits and computations. Curr Opin Neurobiol 24:120–132CrossRefGoogle Scholar
  24. 24.
    Giraudet P, Berthommier F, Chaput M (2002) Mitral cell temporal response patterns evoked by odor mixtures in the rat olfactory bulb. J Neurophysiol 88:829–838CrossRefGoogle Scholar
  25. 25.
    Grosmaitre X, Fuss SH, Lee AC, Adipietro KA, Matsunami H, Mombaerts P, Ma M (2009) SR1, a mouse odorant receptor with an unusually broad response profile. J Neurosci 29:14545–14552CrossRefGoogle Scholar
  26. 26.
    Grossman KJ, Mallik AK, Ross J, Kay LM, Issa NP (2008) Glomerular activation patterns and the perception of odor mixtures. Eur J Neurosci 27:2676–2685CrossRefGoogle Scholar
  27. 27.
    Gupta P, Albeanu DF, Bhalla US (2015) Olfactory bulb coding of odors, mixtures and sniffs is a linear sum of odor time profiles. Nat Neurosci 18:272–281CrossRefGoogle Scholar
  28. 28.
    Jinks A, Laing DG (1999) A limit in the processing of components in odour mixtures. Perception 28:395–404CrossRefGoogle Scholar
  29. 29.
    Jinks A, Laing DG (2001) The analysis of odor mixtures by humans: evidence for a configurational process. Physiol Behav 72:51–63CrossRefGoogle Scholar
  30. 30.
    Johnson DMG, Illig KR, Behan M, Haberly LB (2000) New features of connectivity in piriform cortex visualized by intracellular injection of Pyramidal Cells Suggest that “Primary” olfactory cortex functions like “Association” cortex in other sensory systems. J Neurosci 20:6974–6982CrossRefGoogle Scholar
  31. 31.
    Jones FN, Woskow MH (1964) On the intensity of odor mixtures. Ann N Y Acad Sci 116:484–494CrossRefGoogle Scholar
  32. 32.
    Kadohisa M, Wilson DA (2006) Olfactory cortical adaptation facilitates detection of odors against background. J Neurophysiol 95:1888–1896CrossRefGoogle Scholar
  33. 33.
    Kaeppler K, Mueller F (2013) Odor classification: a review of factors influencing perception-based odor arrangements. Chem Senses 38:189–209CrossRefGoogle Scholar
  34. 34.
    Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K (2001) Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21:6018–6025CrossRefGoogle Scholar
  35. 35.
    Kato HK, Chu MW, Isaacson JS, Komiyama T (2012) Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron 76:962–975CrossRefGoogle Scholar
  36. 36.
    Kay LM, Lowry CA, Jacobs HA (2003) Receptor contributions to configural and elemental odor mixture perception. Behav Neurosci 117:1108–1114CrossRefGoogle Scholar
  37. 37.
    Kay LM, Crk T, Thorngate J (2005) A redefinition of odor mixture quality. Behav Neurosci 119:726–733CrossRefGoogle Scholar
  38. 38.
    Khan RM, Luk C-H, Flinker A, Aggarwal A, Lapid H, Haddad R, Sobel N (2007) Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J Neurosci 27:10015–10023CrossRefGoogle Scholar
  39. 39.
    Koulakov AA, Enikolopov AG and Rinberg D (2009) The structure of human olfactory space. ArXiv: 0907.3964 Q-BioGoogle Scholar
  40. 40.
    Kurahashi T, Lowe G, Gold GH (1994) Suppression of odorant responses by odorants in olfactory receptor cells. Science 265:118–120CrossRefGoogle Scholar
  41. 41.
    Laing DG, Francis GW (1989) The capacity of humans to identify odors in mixtures. Physiol Behav 46:809–814CrossRefGoogle Scholar
  42. 42.
    Laing DG, Glemarec A (1992) Selective attention and the perceptual analysis of odor mixtures. Physiol Behav 52:1047–1053CrossRefGoogle Scholar
  43. 43.
    Laing DG, Panhuber H, Willcox ME, Pittman EA (1984) Quality and intensity of binary odor mixtures. Physiol Behav 33:309–319CrossRefGoogle Scholar
  44. 44.
    Lawless HT (1999) Descriptive analysis of complex odors: reality, model or illusion? Food Qual Prefer 10:325–332CrossRefGoogle Scholar
  45. 45.
    Lei H, Mooney R, Katz LC (2006) Synaptic integration of olfactory information in mouse anterior olfactory nucleus. J Neurosci Off J Soc Neurosci 26:12023–12032CrossRefGoogle Scholar
  46. 46.
    Li W, Luxenberg E, Parrish T, Gottfried JA (2006) Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron 52:1097–1108CrossRefGoogle Scholar
  47. 47.
    Lin DY, Shea SD, Katz LC (2006) Representation of natural stimuli in the rodent main olfactory bulb. Neuron 50:937–949CrossRefGoogle Scholar
  48. 48.
    Linster C, Cleland TA (2004) Configurational and elemental odor mixture perception can arise from local inhibition. J Comput Neurosci 16:39–47CrossRefGoogle Scholar
  49. 49.
    Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723CrossRefGoogle Scholar
  50. 50.
    Marasco A, De Paris A, Migliore M (2016) Predicting the response of olfactory sensory neurons to odor mixtures from single odor response. Sci, Rep, p 6Google Scholar
  51. 51.
    Markopoulos F, Rokni D, Gire DH, Murthy VN (2012) Functional properties of cortical feedback projections to the olfactory bulb. Neuron 76:1175–1188CrossRefGoogle Scholar
  52. 52.
    Mathis A, Rokni D, Kapoor V, Bethge M, Murthy VN (2016) Reading out olfactory receptors: feed forward circuits detect odors in mixtures without demixing. Neuron 91:1110–1123CrossRefGoogle Scholar
  53. 53.
    Mayer F, Grosch W (2001) Aroma simulation on the basis of the odourant composition of roasted coffee headspace. Flavour Fragr J. 16:180–190CrossRefGoogle Scholar
  54. 54.
    McGann JP, Pírez N, Gainey MA, Muratore C, Elias AS, Wachowiak M (2005) Odorant representations are modulated by intra- but not interglomerular presynaptic inhibition of olfactory sensory neurons. Neuron 48:1039–1053CrossRefGoogle Scholar
  55. 55.
    Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z et al (2011) Cortical representations of olfactory input by trans-synaptic tracing. Nature 472:191–196CrossRefGoogle Scholar
  56. 56.
    Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278CrossRefGoogle Scholar
  57. 57.
    Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R (1996) Visualizing an olfactory sensory map. Cell 87:675–686CrossRefGoogle Scholar
  58. 58.
    Monahan K, Lomvardas S (2015) Monoallelic expression of olfactory receptors. Annu Rev Cell Dev Biol 31:721–740CrossRefGoogle Scholar
  59. 59.
    Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A 194:501–515CrossRefGoogle Scholar
  60. 60.
    Oka Y, Omura M, Kataoka H, Touhara K (2004) Olfactory receptor antagonism between odorants. EMBO J 23:120–126CrossRefGoogle Scholar
  61. 61.
    Olender T, Lancet D, Nebert DW (2008) Update on the olfactory receptor (OR) gene superfamily. Hum Genom 3:87–97CrossRefGoogle Scholar
  62. 62.
    Otazu GH, Chae H, Davis MB, Albeanu DF (2015) Cortical feedback decorrelates olfactory bulb output in awake mice. Neuron 86:1461–1477CrossRefGoogle Scholar
  63. 63.
    Poo C, Isaacson JS (2009) Odor representations in olfactory cortex: “Sparse” coding, global inhibition, and oscillations. Neuron 62:850–861CrossRefGoogle Scholar
  64. 64.
    Rokni D, Hemmelder V, Kapoor V, Murthy VN (2014) An olfactory cocktail party: figure-ground segregation of odorants in rodents. Nat Neurosci 17:1225–1232CrossRefGoogle Scholar
  65. 65.
    Rospars J-P, Lansky P, Chaput M, Duchamp-Viret P (2008) Competitive and noncompetitive odorant interactions in the early neural coding of odorant mixtures. J Neurosci 28:2659–2666CrossRefGoogle Scholar
  66. 66.
    Saha D, Leong K, Li C, Peterson S, Siegel G, Raman B (2013) A spatiotemporal coding mechanism for background-invariant odor recognition. Nat Neurosci 16:1830–1839CrossRefGoogle Scholar
  67. 67.
    Shahidi F, Rubin LJ, D’Souza LA, Teranishi R, Buttery RG (1986) Meat flavor volatiles: a review of the composition, techniques of analysis, and sensory evaluation. CRC Crit Rev Food Sci Nutr 24:141–243CrossRefGoogle Scholar
  68. 68.
    Shen K, Tootoonian S, Laurent G (2013) Encoding of mixtures in a simple olfactory system. Neuron 80:1246–1262CrossRefGoogle Scholar
  69. 69.
    Silbering AF, Galizia CG (2007) Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J Neurosci 27:11966–11977CrossRefGoogle Scholar
  70. 70.
    Stettler DD, Axel R (2009) Representations of odor in the piriform cortex. Neuron 63:854–864CrossRefGoogle Scholar
  71. 71.
    Stevenson RJ, Wilson DA (2007) Odour perception: an object-recognition approach. Perception 36:1821–1833CrossRefGoogle Scholar
  72. 72.
    Takeuchi H, Ishida H, Hikichi S, Kurahashi T (2009) Mechanism of olfactory masking in the sensory cilia. J Gen Physiol 133:583–601CrossRefGoogle Scholar
  73. 73.
    Tan J, Savigner A, Ma M, Luo M (2010) Odor information processing by the olfactory bulb analyzed in gene-targeted mice. Neuron 65:912–926CrossRefGoogle Scholar
  74. 74.
    Thomas-Danguin T, Sinding C, Romagny S, El Mountassir F, Atanasova B, Le Berre E, Le Bon AM, Coureaud G (2014) The perception of odor objects in everyday life: a review on the processing of odor mixtures. Front Psychol 5:504.  https://doi.org/10.3389/fpsyg.2014.00504 CrossRefGoogle Scholar
  75. 75.
    Urban NN, Sakmann B (2002) Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J Physiol 542:355–367CrossRefGoogle Scholar
  76. 76.
    Vassar R, Chao SK, Sitcheran R, Nuñez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991CrossRefGoogle Scholar
  77. 77.
    Weiss T, Snitz K, Yablonka A, Khan RM, Gafsou D, Schneidman E, Sobel N (2012) Perceptual convergence of multi-component mixtures in olfaction implies an olfactory white. Proc Natl Acad Sci 109:19959–19964CrossRefGoogle Scholar
  78. 78.
    Wilson DA (2003) Rapid, experience-induced enhancement in odorant discrimination by anterior piriform cortex neurons. J Neurophysiol 90:65–72CrossRefGoogle Scholar
  79. 79.
    Wilson DA, Stevenson RJ (2006) Learning to smell: olfactory perception from neurobiology to behavior. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  80. 80.
    Wilson DA, Sullivan RM (2011) Cortical processing of odor objects. Neuron 72:506–519CrossRefGoogle Scholar
  81. 81.
    Wilson RI, Mainen ZF (2006) Early events in olfactory processing. Annu Rev Neurosci 29:163–201CrossRefGoogle Scholar
  82. 82.
    Wilson DA, Sullivan RM, Leon M (1987) Single-unit analysis of postnatal olfactory learning: modified olfactory bulb output response patterns to learned attractive odors. J Neurosci 7:3154–3162CrossRefGoogle Scholar
  83. 83.
    Wiltrout C, Dogra S, Linster C (2003) Configurational and nonconfigurational interactions between odorants in binary mixtures. Behav Neurosci 117:236–245CrossRefGoogle Scholar
  84. 84.
    Yamada Y, Bhaukaurally K, Madarász TJ, Pouget A, Rodriguez I, Carleton A (2017) Context- and output layer-dependent long-term ensemble plasticity in a sensory circuit. Neuron 93(1198–1212):e5Google Scholar
  85. 85.
    Yoshida I, Mori K (2007) Odorant category profile selectivity of olfactory cortex neurons. J Neurosci 27:9105–9114CrossRefGoogle Scholar
  86. 86.
    Zarzo M, Stanton DT (2006) Identification of latent variables in a semantic odor profile database using principal component analysis. Chem Senses 31:713–724CrossRefGoogle Scholar

Copyright information

© Indian Institute of Science 2017

Authors and Affiliations

  1. 1.Department of Molecular and Cellular Biology, and Center for Brain ScienceHarvard UniversityCambridgeUSA
  2. 2.Department of Medical Neurobiology, Faculty of MedicineHebrew UniversityJerusalemIsrael

Personalised recommendations