Advertisement

Journal of the Indian Institute of Science

, Volume 97, Issue 3, pp 325–337 | Cite as

Computational Problems in Multi-tissue Models of Health and Disease

  • Manikandan Narayanan
Review Article
  • 100 Downloads

Abstract

A modern development at the interface of computer science and systems biology is being fostered by high-dimensional molecular data emerging on multiple tissues of the same individual collected across large groups of healthy/diseased individuals. We review computational and statistical problems that arise in analyzing such multi-tissue genomic datasets, specifically problems posing new challenges compared to their single-tissue counterparts, such as ones related to missing data imputation, statistical learning of high-dimensional network models capturing gene–gene correlations within/across tissues, and graph algorithms to identify genes clustering across many tissue networks. A recurring research theme is the potential to integrate or pool information from across tissues to enhance power of detecting signals shared across tissues while also accounting for tissue-specific differences. We show how methods harnessing this integrative potential to address multi-tissue problems ranging from correlation/causal network inference to graph algorithms are ushering in an era of integrated, whole-system modeling of life processes.

Keywords

Bioinformatics Computational systems biology Genomic data science Multi-tissue data Biomolecular networks Gene networks Intra/inter-tissue networks Graph algorithms Whole-body/system models. 

Notes

Acknowledgements

This research was supported in part by the Intramural Research Program of the NIH, NIAID.

References

  1. 1.
    Allen GI, Tibshirani R (2010) Transposable regularized covariance models with an application to missing data imputation. Ann Appl Stat 4(2):764–790CrossRefGoogle Scholar
  2. 2.
    Allen GI, Tibshirani R (2012) Inference with transposable data: modelling the effects of row and column correlations. J R Stat Soc Ser B (Statistical Methodology) 74(4):721–743CrossRefGoogle Scholar
  3. 3.
    Bickel PJ, Brown JB, Huang H, Li Q (2009) An overview of recent developments in genomics and associated statistical methods. Philos Trans Ser A Math Phys Eng Sci 367(1906):4313–4337CrossRefGoogle Scholar
  4. 4.
    Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544(1):1–122CrossRefGoogle Scholar
  5. 5.
    Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, Famili I (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol 5:180CrossRefGoogle Scholar
  6. 6.
    Bordbar A, McCloskey D, Zielinski DC, Sonnenschein N, Jamshidi N, Palsson BO (2015) Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. Cell Syst 1(4):283–292CrossRefGoogle Scholar
  7. 7.
    Coatrieux JL, Frangi AF, Peng GCY, D’Argenio DZ, Marmarelis VZ, Michailov A (2011) Editorial: TBME Letters special issue on multiscale modeling and analysis in computational biology and medicine–part-2. IEEE Trans BioMed Eng 58(12):3434–3439CrossRefGoogle Scholar
  8. 8.
    National Research Council, Division on Engineering and Physical Sciences, Board on Mathematical Sciences and Their Applications, and Committee on Mathematical Sciences Research for DOE’s Computational Biology (2005) Mathematics and 21st Century Biology. National Academies Press, Washington, DCGoogle Scholar
  9. 9.
    Danaher P, Wang P, Witten DM (2014) The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc Ser B Stat Methodol 76(2):373–397CrossRefGoogle Scholar
  10. 10.
    Didelez V, Sheehan N (2007) Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 16(4):309–330CrossRefGoogle Scholar
  11. 11.
    Do KT, Kastenmüller G, Mook-Kanamori DO, Yousri NA, Theis FJ, Suhre K, Krumsiek J (2015) Network-based approach for analyzing intra- and interfluid metabolite associations in human blood, urine, and saliva. J Proteome Res 14(2):1183–1194CrossRefGoogle Scholar
  12. 12.
    Dobrin R, Zhu J, Molony C, Argman C, Parrish ML, Carlson S, Allan MF, Pomp D, Schadt EE (2009) Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol 10(5):R55CrossRefGoogle Scholar
  13. 13.
    Droujinine IA, Perrimon N (2013) Defining the interorgan communication network: systemic coordination of organismal cellular processes under homeostasis and localized stress. Front Cell Infect Microbiol 3:82CrossRefGoogle Scholar
  14. 14.
    Flutre T, Wen X, Pritchard J, Stephens M (2013) A statistical framework for joint eQTL analysis in multiple tissues. PLoS Genet 9(5):e1003486CrossRefGoogle Scholar
  15. 15.
    Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441CrossRefGoogle Scholar
  16. 16.
    de Oliveira Dal’Molin C CG, Quek LE, Saa PA, Nielsen LK (2015) A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. Front Plant Sci 6:4Google Scholar
  17. 17.
    Grundberg E, Small KS, Hedman ÃK, Nica AC, Buil A, Keildson S, Bell JT, Yang TP, Meduri E, Barrett A, Nisbett J, Sekowska M, Wilk A, Shin SY, Glass D, Travers M, Min JL, Ring S, Ho K, Thorleifsson G, Kong A, Thorsteindottir U, Ainali C, Dimas AS, Hassanali N, Ingle C, Knowles D, Krestyaninova M, Lowe CE, Di Meglio P, Montgomery SB, Parts L, Potter S, Surdulescu G, Tsaprouni L, Tsoka S, Bataille V, Durbin R, Nestle FO, O’Rahilly S, Soranzo N, Lindgren CM, Zondervan KT, Ahmadi KR, Schadt EE, Stefansson K, Smith GD, McCarthy MI, Deloukas P, Dermitzakis ET, Spector TD (2012) Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 44(10):1084–1089CrossRefGoogle Scholar
  18. 18.
    GTEx Consortium (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348(6235):648–660CrossRefGoogle Scholar
  19. 19.
    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, Second Edition, volume (Chapter 17 on Graphical Models). Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Huang G-J, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, Taylor JM, Mott R, Flint J (2009) High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Genome Res 19(6):1133–1140CrossRefGoogle Scholar
  21. 21.
    Kannan R, Vempala S, Vetta A (2004) On clusterings: good, bad and spectral. J ACM 51(3):497–515CrossRefGoogle Scholar
  22. 22.
    King MR, Diamond SL (2012) Multiscale systems biology: a special issue devoted to understanding biology and medicine across multiple scales. Ann Biomed Eng 40(11):2293–2294CrossRefGoogle Scholar
  23. 23.
    Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271CrossRefGoogle Scholar
  24. 24.
    Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA (2010) Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly, and Rafael A. Irizarry. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11(10):733–739CrossRefGoogle Scholar
  25. 25.
    Long Q, Argmann C, Houten SM, Huang T, Peng S, Zhao Y, Tu Z, Zhu J (2016) Inter-tissue coexpression network analysis reveals DPP4 as an important gene in heart to blood communication. Genome Med 8(1):15CrossRefGoogle Scholar
  26. 26.
    Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4):e1003580CrossRefGoogle Scholar
  27. 27.
    Mazumder R, Hastie T (2012) Exact covariance thresholding into connected components for large-scale graphical lasso. J Mach Learn Res 13:781–794Google Scholar
  28. 28.
    Mitra K, Carvunis AR, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14(10):719–732CrossRefGoogle Scholar
  29. 29.
    Narayanan M, Vetta A, Schadt EE, Zhu J (2010) Simultaneous clustering of multiple gene expression and physical interaction datasets. PLoS Comput Biol 6(4):e1000742CrossRefGoogle Scholar
  30. 30.
    Newman M (2010) Networks : an introduction. Oxford University, OxfordCrossRefGoogle Scholar
  31. 31.
    Nyman E, Brännmark C, Palmér R, Brugård J, Nyström FH, Strålfors P, Cedersund G (2011) A hierarchical whole-body modeling approach elucidates the link between in vitro insulin signaling and in vivo glucose homeostasis. J Biol Chem 286(29):26028–26041CrossRefGoogle Scholar
  32. 32.
    Ongen H, Brown AA, Delaneau O, Panousis N, Nica AC, GTEx Consortium, Dermitzakis ET (2016) Estimating the causal tissues for complex traits and diseases. bioRxiv, 074682Google Scholar
  33. 33.
    Pierson E, Koller D, Battle A, Mostafavi S, Ardlie KG, Getz G, Wright FA, Kellis M, Volpi S, Dermitzakis ET, GTEx Consortium (2015) Sharing and specificity of co-expression networks across 35 human tissues. PLoS Comput Biol 11(5):e1004220CrossRefGoogle Scholar
  34. 34.
    Sharan R, Ideker T (2006) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24(4):427–433CrossRefGoogle Scholar
  35. 35.
    Touloumis A, Marioni JC, Tavaré S (2016) HDTD: analyzing multi-tissue gene expression data. Bioinformatics (Oxford, England) 32(14):2193–2195CrossRefGoogle Scholar
  36. 36.
    Wang J, Gamazon ER, Pierce BL, Stranger BE, Im HK, Gibbons RD, Cox NJ, Nicolae DL, Chen LS (2016) Imputing gene expression in uncollected tissues within and beyond GTEx. Am J Hum Genet 98(4):697–708CrossRefGoogle Scholar
  37. 37.
    Yibo W, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R (2014) Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158(6):1415–1430CrossRefGoogle Scholar
  38. 38.
    Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed model association methods. Nat Genet 46(2):100–106CrossRefGoogle Scholar
  39. 39.
    Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ (2006) Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 16(8):995–1004CrossRefGoogle Scholar
  40. 40.
    Zhang B, Tran L, Emilsson V, Zhu J (2016) Characterization of genetic networks associated with Alzheimer’s disease. Methods Mol Biol (Clifton, N.J.) 1303:459–477CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Barocas VH, Berceli SA, Clancy CE, Eckmann DM, Garbey M, Kassab GS, Lochner DR, McCulloch AD, Tran-Son-Tay R, Trayanova NA (2016) Multi-scale modeling of the cardiovascular system: disease development, progression, and clinical intervention. Ann Biomed Eng 44(9):2642–2660CrossRefGoogle Scholar

Copyright information

© Indian Institute of Science 2017

Authors and Affiliations

  1. 1.Systems Genomics and Bioinformatics Unit, Laboratory of Systems BiologyNational Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH)BethesdaUSA

Personalised recommendations