Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Computational Problems in Multi-tissue Models of Health and Disease

  • 261 Accesses

Abstract

A modern development at the interface of computer science and systems biology is being fostered by high-dimensional molecular data emerging on multiple tissues of the same individual collected across large groups of healthy/diseased individuals. We review computational and statistical problems that arise in analyzing such multi-tissue genomic datasets, specifically problems posing new challenges compared to their single-tissue counterparts, such as ones related to missing data imputation, statistical learning of high-dimensional network models capturing gene–gene correlations within/across tissues, and graph algorithms to identify genes clustering across many tissue networks. A recurring research theme is the potential to integrate or pool information from across tissues to enhance power of detecting signals shared across tissues while also accounting for tissue-specific differences. We show how methods harnessing this integrative potential to address multi-tissue problems ranging from correlation/causal network inference to graph algorithms are ushering in an era of integrated, whole-system modeling of life processes.

This is a preview of subscription content, log in to check access.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

References

  1. 1.

    Allen GI, Tibshirani R (2010) Transposable regularized covariance models with an application to missing data imputation. Ann Appl Stat 4(2):764–790

  2. 2.

    Allen GI, Tibshirani R (2012) Inference with transposable data: modelling the effects of row and column correlations. J R Stat Soc Ser B (Statistical Methodology) 74(4):721–743

  3. 3.

    Bickel PJ, Brown JB, Huang H, Li Q (2009) An overview of recent developments in genomics and associated statistical methods. Philos Trans Ser A Math Phys Eng Sci 367(1906):4313–4337

  4. 4.

    Boccaletti S, Bianconi G, Criado R, del Genio CI, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544(1):1–122

  5. 5.

    Bordbar A, Feist AM, Usaite-Black R, Woodcock J, Palsson BO, Famili I (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol 5:180

  6. 6.

    Bordbar A, McCloskey D, Zielinski DC, Sonnenschein N, Jamshidi N, Palsson BO (2015) Personalized Whole-Cell Kinetic Models of Metabolism for Discovery in Genomics and Pharmacodynamics. Cell Syst 1(4):283–292

  7. 7.

    Coatrieux JL, Frangi AF, Peng GCY, D’Argenio DZ, Marmarelis VZ, Michailov A (2011) Editorial: TBME Letters special issue on multiscale modeling and analysis in computational biology and medicine–part-2. IEEE Trans BioMed Eng 58(12):3434–3439

  8. 8.

    National Research Council, Division on Engineering and Physical Sciences, Board on Mathematical Sciences and Their Applications, and Committee on Mathematical Sciences Research for DOE’s Computational Biology (2005) Mathematics and 21st Century Biology. National Academies Press, Washington, DC

  9. 9.

    Danaher P, Wang P, Witten DM (2014) The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc Ser B Stat Methodol 76(2):373–397

  10. 10.

    Didelez V, Sheehan N (2007) Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 16(4):309–330

  11. 11.

    Do KT, Kastenmüller G, Mook-Kanamori DO, Yousri NA, Theis FJ, Suhre K, Krumsiek J (2015) Network-based approach for analyzing intra- and interfluid metabolite associations in human blood, urine, and saliva. J Proteome Res 14(2):1183–1194

  12. 12.

    Dobrin R, Zhu J, Molony C, Argman C, Parrish ML, Carlson S, Allan MF, Pomp D, Schadt EE (2009) Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol 10(5):R55

  13. 13.

    Droujinine IA, Perrimon N (2013) Defining the interorgan communication network: systemic coordination of organismal cellular processes under homeostasis and localized stress. Front Cell Infect Microbiol 3:82

  14. 14.

    Flutre T, Wen X, Pritchard J, Stephens M (2013) A statistical framework for joint eQTL analysis in multiple tissues. PLoS Genet 9(5):e1003486

  15. 15.

    Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441

  16. 16.

    de Oliveira Dal’Molin C CG, Quek LE, Saa PA, Nielsen LK (2015) A multi-tissue genome-scale metabolic modeling framework for the analysis of whole plant systems. Front Plant Sci 6:4

  17. 17.

    Grundberg E, Small KS, Hedman ÃK, Nica AC, Buil A, Keildson S, Bell JT, Yang TP, Meduri E, Barrett A, Nisbett J, Sekowska M, Wilk A, Shin SY, Glass D, Travers M, Min JL, Ring S, Ho K, Thorleifsson G, Kong A, Thorsteindottir U, Ainali C, Dimas AS, Hassanali N, Ingle C, Knowles D, Krestyaninova M, Lowe CE, Di Meglio P, Montgomery SB, Parts L, Potter S, Surdulescu G, Tsaprouni L, Tsoka S, Bataille V, Durbin R, Nestle FO, O’Rahilly S, Soranzo N, Lindgren CM, Zondervan KT, Ahmadi KR, Schadt EE, Stefansson K, Smith GD, McCarthy MI, Deloukas P, Dermitzakis ET, Spector TD (2012) Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 44(10):1084–1089

  18. 18.

    GTEx Consortium (2015) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348(6235):648–660

  19. 19.

    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, Second Edition, volume (Chapter 17 on Graphical Models). Springer, New York

  20. 20.

    Huang G-J, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, Taylor JM, Mott R, Flint J (2009) High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Genome Res 19(6):1133–1140

  21. 21.

    Kannan R, Vempala S, Vetta A (2004) On clusterings: good, bad and spectral. J ACM 51(3):497–515

  22. 22.

    King MR, Diamond SL (2012) Multiscale systems biology: a special issue devoted to understanding biology and medicine across multiple scales. Ann Biomed Eng 40(11):2293–2294

  23. 23.

    Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

  24. 24.

    Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA (2010) Héctor Corrada Bravo, David Simcha, Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly, and Rafael A. Irizarry. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11(10):733–739

  25. 25.

    Long Q, Argmann C, Houten SM, Huang T, Peng S, Zhao Y, Tu Z, Zhu J (2016) Inter-tissue coexpression network analysis reveals DPP4 as an important gene in heart to blood communication. Genome Med 8(1):15

  26. 26.

    Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4):e1003580

  27. 27.

    Mazumder R, Hastie T (2012) Exact covariance thresholding into connected components for large-scale graphical lasso. J Mach Learn Res 13:781–794

  28. 28.

    Mitra K, Carvunis AR, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14(10):719–732

  29. 29.

    Narayanan M, Vetta A, Schadt EE, Zhu J (2010) Simultaneous clustering of multiple gene expression and physical interaction datasets. PLoS Comput Biol 6(4):e1000742

  30. 30.

    Newman M (2010) Networks : an introduction. Oxford University, Oxford

  31. 31.

    Nyman E, Brännmark C, Palmér R, Brugård J, Nyström FH, Strålfors P, Cedersund G (2011) A hierarchical whole-body modeling approach elucidates the link between in vitro insulin signaling and in vivo glucose homeostasis. J Biol Chem 286(29):26028–26041

  32. 32.

    Ongen H, Brown AA, Delaneau O, Panousis N, Nica AC, GTEx Consortium, Dermitzakis ET (2016) Estimating the causal tissues for complex traits and diseases. bioRxiv, 074682

  33. 33.

    Pierson E, Koller D, Battle A, Mostafavi S, Ardlie KG, Getz G, Wright FA, Kellis M, Volpi S, Dermitzakis ET, GTEx Consortium (2015) Sharing and specificity of co-expression networks across 35 human tissues. PLoS Comput Biol 11(5):e1004220

  34. 34.

    Sharan R, Ideker T (2006) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24(4):427–433

  35. 35.

    Touloumis A, Marioni JC, Tavaré S (2016) HDTD: analyzing multi-tissue gene expression data. Bioinformatics (Oxford, England) 32(14):2193–2195

  36. 36.

    Wang J, Gamazon ER, Pierce BL, Stranger BE, Im HK, Gibbons RD, Cox NJ, Nicolae DL, Chen LS (2016) Imputing gene expression in uncollected tissues within and beyond GTEx. Am J Hum Genet 98(4):697–708

  37. 37.

    Yibo W, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R (2014) Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158(6):1415–1430

  38. 38.

    Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed model association methods. Nat Genet 46(2):100–106

  39. 39.

    Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, Drake TA, Lusis AJ (2006) Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 16(8):995–1004

  40. 40.

    Zhang B, Tran L, Emilsson V, Zhu J (2016) Characterization of genetic networks associated with Alzheimer’s disease. Methods Mol Biol (Clifton, N.J.) 1303:459–477

  41. 41.

    Zhang Y, Barocas VH, Berceli SA, Clancy CE, Eckmann DM, Garbey M, Kassab GS, Lochner DR, McCulloch AD, Tran-Son-Tay R, Trayanova NA (2016) Multi-scale modeling of the cardiovascular system: disease development, progression, and clinical intervention. Ann Biomed Eng 44(9):2642–2660

Download references

Acknowledgements

This research was supported in part by the Intramural Research Program of the NIH, NIAID.

Author information

Correspondence to Manikandan Narayanan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narayanan, M. Computational Problems in Multi-tissue Models of Health and Disease. J Indian Inst Sci 97, 325–337 (2017). https://doi.org/10.1007/s41745-017-0040-6

Download citation

Keywords

  • Bioinformatics
  • Computational systems biology
  • Genomic data science
  • Multi-tissue data
  • Biomolecular networks
  • Gene networks
  • Intra/inter-tissue networks
  • Graph algorithms
  • Whole-body/system models.