Journal of the Indian Institute of Science

, Volume 97, Issue 1, pp 41–57 | Cite as

A Systems Perspective of Signalling Networks in Host–Pathogen Interactions

Review Article

Abstract

Signalling in biological systems occurs through complex networks of molecular interactions and leads to regulation of various physiological activities within and between cells. As a whole, they span multiple spatial and temporal scales and equip the cells to respond to a variety of signals. The complexity arises from a large number of molecular players, their pleiotropic roles and extensive interconnections among them. Signalling networks have been studied extensively using systems biology approaches. Modelling these networks at various levels of granularity can provide considerable insight into the interactions between host and the pathogen in infectious diseases. In this review, we describe some of the widely used modelling methods for studying signalling pathways and their networks, particularly in the context of host–pathogen interactions. A number of example cases are described, which provide a glimpse of the different types of insights provided by such models.

Keywords

Transcriptomics Phylogenetic profiling Quantitative modelling Genome-wide interaction network Stochastic simulations 

References

  1. 1.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826CrossRefGoogle Scholar
  2. 2.
    Hornef MW, Wick MJ, Rhen M, Normark S (2002) Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol 3:1033–1040CrossRefGoogle Scholar
  3. 3.
    Barry CE et al (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–855Google Scholar
  4. 4.
    Roy CR, Mocarski ES (2007) Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 8:1179–1187CrossRefGoogle Scholar
  5. 5.
    Cossart P, Roy CR (2010) Manipulation of host membrane machinery by bacterial pathogens. Curr Opin Cell Biol 22:547–554CrossRefGoogle Scholar
  6. 6.
    Gunawardena J (2008) Signals and systems: towards a systems biology of signal transduction. Proc IEEE 96:1386–1397CrossRefGoogle Scholar
  7. 7.
    Hughey JJ, Lee TK, Covert MW (2010) Computational modeling of mammalian signaling networks. Wiley Interdiscip Rev Syst Biol Med 2:194–209CrossRefGoogle Scholar
  8. 8.
    Palumbo R et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164:441–449CrossRefGoogle Scholar
  9. 9.
    Ward PS, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol 4:a006783CrossRefGoogle Scholar
  10. 10.
    Krauss G (2006) Biochemistry of signal transduction and regulation. WileyGoogle Scholar
  11. 11.
    Lukas J, Lukas C, Bartek J (2004) Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair 3:997–1007CrossRefGoogle Scholar
  12. 12.
    Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176CrossRefGoogle Scholar
  13. 13.
    Janes KA, Lauffenburger DA (2013) Models of signalling networks—what cell biologists can gain from them and give to them. J Cell Sci 126:1913–1921CrossRefGoogle Scholar
  14. 14.
    Kitano H (2002) Computational systems biology. Nature 420:206–210CrossRefGoogle Scholar
  15. 15.
    Hood L (2003) Systems biology: integrating technology, biology, and computation. Mech Ageing Dev 124:9–16CrossRefGoogle Scholar
  16. 16.
    Yeang C-H et al (2005) Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol 6:1CrossRefGoogle Scholar
  17. 17.
    Lodish H et al (1995) Molecular cell biology, 3rd edn. Scientific American Books, New YorkGoogle Scholar
  18. 18.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev Cancer 2:489–501CrossRefGoogle Scholar
  19. 19.
    Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735Google Scholar
  20. 20.
    Beyer A, Bandyopadhyay S, Ideker T (2007) Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet 8:699–710CrossRefGoogle Scholar
  21. 21.
    Fazekas D et al (2013) SignaLink 2—a signaling pathway resource with multi-layered regulatory networks. BMC Syst Biol 7:1CrossRefGoogle Scholar
  22. 22.
    Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6:99–111CrossRefGoogle Scholar
  23. 23.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefGoogle Scholar
  24. 24.
    Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD (2016) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44:D336–D342CrossRefGoogle Scholar
  25. 25.
    Kandasamy K et al (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:1CrossRefGoogle Scholar
  26. 26.
    Chowdhury S, Sarkar RR (2015) Comparison of human cell signaling pathway databases—evolution, drawbacks and challenges. Database 2015:bau126-1–bau126-25CrossRefGoogle Scholar
  27. 27.
    Legewie S, Herzel H, Westerhoff HV, Blüthgen N (2008) Recurrent design patterns in the feedback regulation of the mammalian signalling network. Mol Syst Biol 4:190CrossRefGoogle Scholar
  28. 28.
    Kamburov A, Wierling C, Lehrach H, Herwig R (2009) ConsensusPathDB—a database for integrating human functional interaction networks. Nucleic Acids Res 37:D623–D628CrossRefGoogle Scholar
  29. 29.
    Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283:381–387CrossRefGoogle Scholar
  30. 30.
    Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8:1195–1203CrossRefGoogle Scholar
  31. 31.
    Ferrell JE (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14:140–148CrossRefGoogle Scholar
  32. 32.
    Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231CrossRefGoogle Scholar
  33. 33.
    Weng G, Bhalla US, Iyengar R (1999) Complexity in biological signaling systems. Science 284:92–96CrossRefGoogle Scholar
  34. 34.
    Hoops S et al (2006) COPASI—a complex pathway simulator. Bioinformatics 22:3067–3074CrossRefGoogle Scholar
  35. 35.
    Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) Cell Designer: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162CrossRefGoogle Scholar
  36. 36.
    Vayttaden SJ, Bhalla US (2004) Developing complex signaling models using GENESIS/Kinetikit. Sci Signal, p l4Google Scholar
  37. 37.
    Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20:370–375CrossRefGoogle Scholar
  38. 38.
    Asthagiri AR, Lauffenburger DA (2001) A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 17:227–239CrossRefGoogle Scholar
  39. 39.
    Mukherjee S, Sambarey A, Prashanthi K, Chandra N (2013) Current trends in modeling host–pathogen interactions. Wiley Interdiscip Rev Data Min Knowl Discov 3:109–128CrossRefGoogle Scholar
  40. 40.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361CrossRefGoogle Scholar
  41. 41.
    Hlavacek WS, Faeder JR (2009) The complexity of cell signaling and the need for a new mechanics. Sci Signal 2:e46CrossRefGoogle Scholar
  42. 42.
    Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (2004) BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20:3289–3291CrossRefGoogle Scholar
  43. 43.
    Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based modelling of cellular signalling. In: International conference on concurrency theory, vol 4703. Springer, Berlin, Heidelberg, pp 17–41Google Scholar
  44. 44.
    Colvin J et al (2010) RuleMonkey: software for stochastic simulation of rule-based models. BMC Bioinform 11:1CrossRefGoogle Scholar
  45. 45.
    Marcotte EM et al (1999) Detecting protein function and protein–protein interactions from genome sequences. Science 285:751–753CrossRefGoogle Scholar
  46. 46.
    Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci 96:4285–4288CrossRefGoogle Scholar
  47. 47.
    Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23:324–328CrossRefGoogle Scholar
  48. 48.
    Szklarczyk D et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568CrossRefGoogle Scholar
  49. 49.
    Wang R-S, Albert R (2011) Elementary signaling modes predict the essentiality of signal transduction network components. BMC Syst Biol 5:1CrossRefGoogle Scholar
  50. 50.
    Olivier BG, Snoep JL (2004) Web-based kinetic modelling using JWS Online. Bioinformatics 20:2143–2144CrossRefGoogle Scholar
  51. 51.
    Becker SA et al (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738CrossRefGoogle Scholar
  52. 52.
    Moraru II et al (2008) Virtual cell modelling and simulation software environment. IET Syst Biol 2:352–362CrossRefGoogle Scholar
  53. 53.
    Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504CrossRefGoogle Scholar
  54. 54.
    van Iersel MP et al (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinform 9:399CrossRefGoogle Scholar
  55. 55.
    Karp PD, Paley S, Romero P (2002) The pathway tools software. Bioinformatics 18:S225–S232CrossRefGoogle Scholar
  56. 56.
    Nagasaki M et al (2010) Cell illustrator 4.0: a computational platform for systems biology. In Silico Biol 10:5–26Google Scholar
  57. 57.
    Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26:1378–1380CrossRefGoogle Scholar
  58. 58.
    Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source Code Biol Med 3:1CrossRefGoogle Scholar
  59. 59.
    Zheng J et al (2010) SimBoolNet—a Cytoscape plugin for dynamic simulation of signaling networks. Bioinformatics 26:141–142CrossRefGoogle Scholar
  60. 60.
    Schwab J, Burkovski A, Siegle L, Müssel C, Kestler HA (2016) ViSiBooL-visualization and simulation of Boolean networks with temporal constraints. Bioinformatics 33(4):601–604Google Scholar
  61. 61.
    Bock M, Scharp T, Talnikar C, Klipp E (2014) BooleSim: an interactive Boolean network simulator. Bioinformatics 30:131–132CrossRefGoogle Scholar
  62. 62.
    Bastian M, Heymann S, Jacomy M et al (2009) Gephi: an open source software for exploring and manipulating networks. ICWSM 8:361–362Google Scholar
  63. 63.
    Fontan PA, Walters S, Smith I (2004) Cellular signaling pathways and transcriptional regulation in Mycobacterium tuberculosis: stress control and virulence. Curr Sci 86:122–134Google Scholar
  64. 64.
    Wigginton JE, Kirschner D (2001) A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J Immunol 166:1951–1967CrossRefGoogle Scholar
  65. 65.
    Marino S et al (2004) Dendritic cell trafficking and antigen presentation in the human immune response to Mycobacterium tuberculosis. J Immunol 173:494–506CrossRefGoogle Scholar
  66. 66.
    Sud D, Bigbee C, Flynn JL, Kirschner DE (2006) Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection. J Immunol 176:4296–4314CrossRefGoogle Scholar
  67. 67.
    Linderman JJ, DE Kirschner (2015) In silico models of M. tuberculosis infection provide a route to new therapies. Drug Discov Today Dis Models 15:37–41CrossRefGoogle Scholar
  68. 68.
    Do Porto DAF, Auzmendi J, Peña D, García VE, Moffatt L (2013) Bayesian approach to model CD137 signaling in human M. tuberculosis in vitro responses. PLoS One 8:e55987CrossRefGoogle Scholar
  69. 69.
    Viladomiu M et al (2012) Modeling the role of peroxisome proliferator-activated receptor γ and microRNA-146 in mucosal immune responses to Clostridium difficile. PLoS One 7:e47525CrossRefGoogle Scholar
  70. 70.
    Philipson CW et al (2015) Modeling the regulatory mechanisms by which NLRX1 modulates innate immune responses to Helicobacter pylori infection. PLoS One 10:e0137839CrossRefGoogle Scholar
  71. 71.
    Gillard JJ, Laws TR, Lythe G, Molina-París C (2014) Modeling early events in Francisella tularensis pathogenesis. Front Cell Infect Microbiol 4:169CrossRefGoogle Scholar
  72. 72.
    Miao H et al (2010) Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 84:6687–6698CrossRefGoogle Scholar
  73. 73.
    Smieja J, Jamaluddin M, Brasier AR, Kimmel M (2008) Model-based analysis of interferon-β induced signaling pathway. Bioinformatics 24:2363–2369CrossRefGoogle Scholar
  74. 74.
    Fribourg M et al (2014) Model of influenza A virus infection: dynamics of viral antagonism and innate immune response. J Theor Biol 351:47–57CrossRefGoogle Scholar
  75. 75.
    Hartmann BM et al (2015) Human dendritic cell response signatures distinguish 1918, pandemic, and seasonal H1N1 influenza viruses. J Virol 89:10190–10205CrossRefGoogle Scholar
  76. 76.
    Wang R-S, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:55001CrossRefGoogle Scholar
  77. 77.
    Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24:2044–2050CrossRefGoogle Scholar
  78. 78.
    Wittmann DM et al (2009) Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol 3:1CrossRefGoogle Scholar
  79. 79.
    Samaga R, Klamt S (2013) Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. Cell Commun Signal 11:1CrossRefGoogle Scholar
  80. 80.
    Thakar J, Albert R (2010) Boolean models of within-host immune interactions. Curr Opin Microbiol 13:377–381CrossRefGoogle Scholar
  81. 81.
    Raman K, Bhat AG, Chandra N (2010) A systems perspective of host–pathogen interactions: predicting disease outcome in tuberculosis. Mol BioSyst 6:516–530CrossRefGoogle Scholar
  82. 82.
    Zielinski R et al (2009) The crosstalk between EGF, IGF, and insulin cell signaling pathways—computational and experimental analysis. BMC Syst Biol 3:88CrossRefGoogle Scholar
  83. 83.
    Franke R et al (2008) Host-pathogen systems biology: logical modelling of hepatocyte growth factor and Helicobacter pylori induced c-Met signal transduction. BMC Syst Biol 2:1CrossRefGoogle Scholar
  84. 84.
    Tan P, Tay JC (2006) Evolving Boolean networks to find intervention points in dengue pathogenesis. In: Proceedings of the 8th annual conference on genetic and evolutionary computation. pp 307–308 (ACM, 2006)Google Scholar
  85. 85.
    Zhu D, Rabbat MG, Hero AO, Nowak R, Figueiredo M De (2006) Novo signaling pathway reconstruction from multiple data sources. Nova Publ, New Res Signal TransductGoogle Scholar
  86. 86.
    Gitter A, Carmi M, Barkai N, Bar-Joseph Z (2013) Linking the signaling cascades and dynamic regulatory networks controlling stress responses. Genome Res 23:365–376CrossRefGoogle Scholar
  87. 87.
    Gitter A, Bar-Joseph Z (2013) Identifying proteins controlling key disease signaling pathways. Bioinformatics 29:i227–i236CrossRefGoogle Scholar
  88. 88.
    Budak G, Ozsoy OE, Son YA, Can T, Tuncbag N (2015) Reconstruction of the temporal signaling network in Salmonella-infected human cells. Front Microbiol 6:730CrossRefGoogle Scholar
  89. 89.
    Ritz A et al (2016) Pathways on demand: automated reconstruction of human signaling networks. Npj Syst Biol Appl 2:16002CrossRefGoogle Scholar
  90. 90.
    Jain S, Arrais J, Venkatachari NJ, Ayyavoo V, Bar-Joseph Z (2016) Reconstructing the temporal progression of HIV-1 immune response pathways. Bioinformatics 32:i253–i261CrossRefGoogle Scholar
  91. 91.
    Navratil V et al (2009) VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus–host interaction networks. Nucleic Acids Res 37:D661–D668CrossRefGoogle Scholar
  92. 92.
    Farkas IJ, Szántó-Várnagy Á, Korcsmáros T (2012) Linking proteins to signaling pathways for experiment design and evaluation. PLoS One 7:e36202CrossRefGoogle Scholar
  93. 93.
    Ruths D, Tseng J-T, Nakhleh L, Ram PT (2007) In: Systems biology and computational proteomics. Springer, hidelberg. pp 108–118Google Scholar
  94. 94.
    Ruths D, Nakhleh L, Ram PT (2008) Rapidly exploring structural and dynamic properties of signaling networks using PathwayOracle. BMC Syst Biol 2:1CrossRefGoogle Scholar
  95. 95.
    Zhu P, Aliabadi HM, Uludağ H, Han J (2016) Identification of potential drug targets in cancer signaling pathways using stochastic logical models. Sci Rep, 6Google Scholar
  96. 96.
    Chapman SJ, Hill AV (2012) Human genetic susceptibility to infectious disease. Nat Rev Genet 13:175–188Google Scholar
  97. 97.
    Newport MJ et al (1996) A mutation in the interferon-γ–receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335:1941–1949CrossRefGoogle Scholar
  98. 98.
    Sakaguchi N et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426:454–460CrossRefGoogle Scholar
  99. 99.
    Krachler AM, Woolery AR, Orth K (2011) Manipulation of kinase signaling by bacterial pathogens. J Cell Biol 195:1083–1092CrossRefGoogle Scholar
  100. 100.
    Tato CM, Hunter CA (2002) Host–pathogen interactions: subversion and utilization of the NF-κB pathway during infection. Infect Immun 70:3311–3317CrossRefGoogle Scholar
  101. 101.
    Orth K et al (1999) Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285:1920–1923CrossRefGoogle Scholar
  102. 102.
    Arbibe L et al (2007) An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat Immunol 8:47–56CrossRefGoogle Scholar
  103. 103.
    Mazurkiewicz P et al (2008) SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol 67:1371–1383CrossRefGoogle Scholar
  104. 104.
    Ruckdeschel K et al (1998) Yersinia enterocolitica impairs activation of transcription factor NF-κB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor α production. J Exp Med 187:1069–1079CrossRefGoogle Scholar
  105. 105.
    Ruckdeschel K et al (2001) Yersinia outer protein P of Yersinia enterocolitica simultaneously blocks the nuclear factor-κB pathway and exploits lipopolysaccharide signaling to trigger apoptosis in macrophages. J Immunol 166:1823–1831CrossRefGoogle Scholar
  106. 106.
    Mills SD et al (1997) Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc Natl Acad Sci 94:12638–12643CrossRefGoogle Scholar
  107. 107.
    Brodsky IE, Medzhitov R (2009) Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol 11:521–526CrossRefGoogle Scholar
  108. 108.
    Vilaplana C et al (2014) To achieve an earlier IFN-γ response is not sufficient to control Mycobacterium tuberculosis infection in mice. PLoS one 9:e100830CrossRefGoogle Scholar
  109. 109.
    Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis 84:110–130CrossRefGoogle Scholar
  110. 110.
    Nemeth E et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093CrossRefGoogle Scholar
  111. 111.
    Masson PL, Heremans JF, Schonne E (1969) Lactoferrin, an iron-binbing protein Ni neutrophilic leukocytes. J Exp Med 130:643–658CrossRefGoogle Scholar
  112. 112.
    Parrow NL, Fleming RE, Minnick MF (2013) Sequestration and scavenging of iron in infection. Infect Immun 81:3503–3514CrossRefGoogle Scholar
  113. 113.
    Ghosh S, Prasad KVS, Vishveshwara S, Chandra N (2011) Rule-based modelling of iron homeostasis in tuberculosis. Mol BioSyst 7:2750–2768CrossRefGoogle Scholar
  114. 114.
    Linde J, Wilson D, Hube B, Guthke R (2010) Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Syst Biol 4:1CrossRefGoogle Scholar
  115. 115.
    Linde J et al (2012) Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a systems biology approach. BMC Syst Biol 6:1CrossRefGoogle Scholar
  116. 116.
    Zhao X-M, Qin G (2013) Bioinformatics for diagnosis, prognosis and treatment of complex diseases. Springer, pp 17–31Google Scholar
  117. 117.
    Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A (2011) Immunological biomarkers of tuberculosis. Nat Rev Immunol 11:343–354CrossRefGoogle Scholar
  118. 118.
    Querec TD et al (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10:116–125CrossRefGoogle Scholar
  119. 119.
    Marino S et al (2016) Computational and empirical studies predict Mycobacterium tuberculosis-specific T cells as a biomarker for infection outcome. PLoS Comput Biol 12:e1004804CrossRefGoogle Scholar
  120. 120.
    Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6:140–146CrossRefGoogle Scholar
  121. 121.
    Sahiratmadja E et al (2007) Dynamic changes in pro-and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment. Infect Immun 75:820–829CrossRefGoogle Scholar
  122. 122.
    Sambarey A, Prashanthi K, Chandra N (2013) Mining large-scale response networks reveals ‘topmost activities’ in Mycobacterium tuberculosis infection. Sci Rep 3:2302CrossRefGoogle Scholar
  123. 123.
    Berry MP et al (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977CrossRefGoogle Scholar
  124. 124.
    Van Duin D, Medzhitov R, Shaw AC (2006) Triggering TLR signaling in vaccination. Trends Immunol 27:49–55CrossRefGoogle Scholar
  125. 125.
    Tsuji S et al (2000) Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis Bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 68:6883–6890CrossRefGoogle Scholar
  126. 126.
    Querec T et al (2006) Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 203:413–424CrossRefGoogle Scholar
  127. 127.
    Kasturi SP et al (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543–547CrossRefGoogle Scholar
  128. 128.
    Nakaya HI et al (2011) Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 12:786–795CrossRefGoogle Scholar

Copyright information

© Indian Institute of Science 2017

Authors and Affiliations

  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations