Skip to main content
Log in

Conceptualizing Eukaryotic Metabolic Sensing and Signaling

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

For almost all cells, nutrient availability, from glucose to amino acids, dictates their growth or developmental programs. This nutrient availability is closely coupled to the overall intracellular metabolic state of the cell. Therefore, cells have evolved diverse, robust and versatile modules to sense intracellular metabolic states, activate signaling outputs and regulate outcomes to these states. Yet, signaling and metabolism have been viewed as important but separate. This short review attempts to position aspects of intracellular signaling from a metabolic perspective, highlighting how conserved, core principles of metabolic sensing and signaling can emerge from an understanding of metabolic regulation. I briefly explain the nature of metabolic sensors, using the example of the AMP activated protein kinase (AMPK) as an “energy sensing” hub. Subsequently, I explore how specific central metabolites, particularly acetyl-CoA, but also S-adenosyl methionine and SAICAR, can act as signaling molecules. I extensively illustrate the nature of a metabolic signaling hub using the specific example of the Target of Rapamycin Complex 1 (TORC1), and amino acid sensing. A highlight is the emergence of the lysosome/vacuole as a metabolic and signaling hub. Finally, the need to expand our understanding of the intracellular dynamics (in concentration and localization) of several metabolites, and their signaling hubs is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:

Similar content being viewed by others

References

  1. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  4. Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    Article  Google Scholar 

  5. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    Article  Google Scholar 

  6. Gasch AP, Spellman PT, Kao CM, Carmel-Hare O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  Google Scholar 

  7. Nelson DL, Cox MM (2012) Lehninger Principles of Biochemistry, 6th edn. W H Freeman & Co (Sd)

  8. Dang CV (2012) Links between metabolism and cancer. Genes Dev 26:877–890

    Article  Google Scholar 

  9. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  Google Scholar 

  10. Warburg O (1925) The metabolism of carcinoma cells. Cancer Res 9:148–163

    Article  Google Scholar 

  11. Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:1–8

    Article  Google Scholar 

  12. Wellen KE, Thompson CB (2012) A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol 13:270–276

    Google Scholar 

  13. Wellen KE, Thompson CB (2010) Cellular metabolic stress: considering how cells respond to nutrient excess. Mol. Cell 40:323–332

    Article  Google Scholar 

  14. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  Google Scholar 

  15. Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    Article  Google Scholar 

  16. Aranda A, Pascual A (2001) Nuclear hormone receptors and gene expression. Physiol Rev 81:1269–1304

    Google Scholar 

  17. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  Google Scholar 

  18. Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583:3966–3973

    Article  Google Scholar 

  19. Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci 103:19302–19307

    Article  Google Scholar 

  20. Klosinska MM, Crutchfield CA, Bradley PH, Rabinowitz JD, Broach JR (2011) Yeast cells can access distinct quiescent states. Genes Dev 25:336–349

    Article  Google Scholar 

  21. Tu BP, Mohler RE, Liu JC, Dombek KM, Young ET, Synovec RE, McKnight SL (2007) Cyclic changes in metabolic state during the life of a yeast cell. Proc Natl Acad Sci USA 104:16886–16891

    Article  Google Scholar 

  22. Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–1158

    Article  Google Scholar 

  23. Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD (2010) Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol Biol Cell 21:198–211

    Article  Google Scholar 

  24. Hackett SR, Zanotelli VRT, Xu W, Goya J, Park JO, Perlman DH, Gibney PA, Botstein D, Storey JD, Rabinowitz JD (2016) Systems-level analysis of mechanisms regulating yeast metabolic flux. Science 354:6311

    Article  Google Scholar 

  25. Monod J, Wyman J, Changeux J-P (1964) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  Google Scholar 

  26. Lindsley JE, Rutter J (2006) Whence cometh the allosterome? Proc Natl Acad Sci USA 103:10533–10535

    Article  Google Scholar 

  27. Nussinov R, Tsai C-J (2014) Principles of allosteric interactions in cell signaling. J Am Chem Soc 136:17692–17701

    Article  Google Scholar 

  28. Taylor SS, Ilouz R, Zhang P, Kornev AP (2012) Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 13:646–658

    Article  Google Scholar 

  29. Beavo JA, Krebs E (1979) Phosphorylation–dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    Article  Google Scholar 

  30. Krebs E, Fischer E (1955) Phosphorylase activity of skeletal muscle extracts. J Biol Chem 216:113–120

    Google Scholar 

  31. Fischer E, Krebs E (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 216:121–132

    Google Scholar 

  32. Fischer E (2010) Phosphorylase and the origin of reversible protein phosphorylation. Biol Chem 391:131–137

    Article  Google Scholar 

  33. Jin J, Pawson T (2012) Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc B 367:2540–2555

    Article  Google Scholar 

  34. Graves D, Fischer E, Krebs E (1960) Specificity studies on muscle phosphorylase phosphatase. J Biol Chem 235:805–809

    Google Scholar 

  35. Gratecos D, Detwiler T, Hurd S, Fischer E (1977) Rabbit muscle phosphorylase phosphatase. 1. Purification and chemical properties. Biochemistry 16:4812–4817

    Article  Google Scholar 

  36. Hardie DG (2011) AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908

    Article  Google Scholar 

  37. Hardie DG (2014) AMPK—sensing energy while talking to other signaling pathways. Cell Metab 20:939–952

    Article  Google Scholar 

  38. Mihaylova MM, Shaw RJ (2011) The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy, and metabolism. Nat Cell Biol 13:1016–1023

    Article  Google Scholar 

  39. Hardie DG (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201

    Article  Google Scholar 

  40. Celenza J, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180

    Article  Google Scholar 

  41. Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22:12–13

    Article  Google Scholar 

  42. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13:251–262

    Article  Google Scholar 

  43. Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400–406

    Article  Google Scholar 

  44. Zhang C-S, Jiang B, Li M, Zhu M, Peng Y, Zhang Y-L, Wu Y-Q, Li TY, Liang Y, Lu Z, Lian G, Liu Q, Guo H, Yin Z, Ye Z, Han J, Wu J-W, Yin H, Lin S-Y, Lin S-C (2014) The lysosomal v-ATPase-ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20:526–540

    Article  Google Scholar 

  45. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 21(6):805–821

    Article  Google Scholar 

  46. Cai L, Tu BP (2011) On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb Perspect Biol 76:195–202

    Article  Google Scholar 

  47. Cai L, Tu BP (2012) Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 28:59–87

    Article  Google Scholar 

  48. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550

    Article  Google Scholar 

  49. Shi L, Tu BP (2014) Protein acetylation as a means to regulate protein function in tune with metabolic state. Biochem Soc Trans 42:1037–1042

    Article  Google Scholar 

  50. Shi L, Tu BP (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol 33:125–131

    Article  Google Scholar 

  51. Su X, Wellen KE, Rabinowitz JD (2016) Metabolic control of methylation and acetylation. Curr Opin Chem Biol 30:52–60

    Article  Google Scholar 

  52. Shi L, Tu BP (2013) Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 110(18):7318–7323. doi:10.1073/pnas.1302490110

  53. Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437

    Article  Google Scholar 

  54. Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H, Tantawy MN, Fu A, Manning HC, Horton JD, Hammer RE, Mcknight SL, Tu BP (2014) Article acetate dependence of tumors. Cell 159:1591–1602

    Article  Google Scholar 

  55. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, Nannepaga S, Piccirillo SG, Kovacs Z, Foong C, Huang Z, Barnett S, Mickey BE, DeBerardinis RJ, Tu BP, Maher EA, Bachoo RM (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–1614

    Article  Google Scholar 

  56. Kaochar S, Tu BP (2012) Gatekeepers of chromatin: Small metabolites elicit big changes in gene expression. Trends Biochem Sci 37:477–483

    Article  Google Scholar 

  57. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang X-J, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  Google Scholar 

  58. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  Google Scholar 

  59. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning Z-B, Zeng R, Xiong Y, Guan K-L, Zhao S, Zhao G-P (2010) Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004–1007

    Article  Google Scholar 

  60. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Guan K-L (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  Google Scholar 

  61. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci 3:10230–10235

    Article  Google Scholar 

  62. Guan K-L, Xiong Y (2011) Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36:108–116

    Article  Google Scholar 

  63. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  Google Scholar 

  64. Biggar KK, Li SS-C (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16:5–17

    Article  Google Scholar 

  65. Kitamoto K, Yoshizawa K, Ohsumi Y, Anraku Y (1988) Dynamic aspects of vacuolar and cytosolic amino acid pools of Saccharomyces cerevisiae. J Bacteriol 170:2683–2686

    Article  Google Scholar 

  66. Ohsumi Y, Anraku Y (1980) Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem 256:2079–2082

    Google Scholar 

  67. Lee J, Stock J (1993) Protein phosphatase 2A catalytic subunit is methyl-esterified at its carboxyl terminus by a novel methyltransferase. J Biol Chem 268:19192–19195

    Google Scholar 

  68. Lee J, Chen Y, Tolstykn T, Stock J (1996) A specific protein carboxyl methylesterase that demethylates phosphoprotein phosphatase 2A in bovine brain. Proc Natl Acad Sci 93:6043–6047

    Article  Google Scholar 

  69. Kalhor HR, Luk K, Ramos A, Zobel-Thropp P, Clarke S (2001) Protein phosphatase methyltransferase 1 (Ppm1p) is the sole activity responsible for modification of the major forms of protein phosphatase 2A in yeast. Arch Biochem Biophys 395:239–245

    Article  Google Scholar 

  70. Sutter BM, Wu X, Laxman S, Tu BP (2013) Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154:403–415

    Article  Google Scholar 

  71. Laxman S, Sutter BM, Tu BP (2014) Methionine is a signal of amino acid sufficiency that inhibits autophagy through the methylation of PP2A. Autophagy 10:386–387

    Article  Google Scholar 

  72. Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    Article  Google Scholar 

  73. Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Claudio M (2016) Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem Sci 41:460–471

    Article  Google Scholar 

  74. Christofk Heather R, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233

    Article  Google Scholar 

  75. Anastasiou D, Yu Y, Israelsen WJ, Jiang J, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A, Yang H, Mattaini KR, Metallo CM, Fiske BP, Courtney KD, Malstrom S, Khan TM, Kung C, Skoumbourdis AP, Veith H, Southall N, Walsh MJ, Brimacombe KR, Leister W, Lunt SY, Johnson ZR, Yen KE, Kunii K, Davidson SM, Christofk HR, Austin CP, Inglese J, Harris MH, Asara JM, Stephanopoulos G, Salituro FG, Jin S, Dang L, Auld DS, Park H-W, Cantley LC, Thomas CJ, Vander Heiden MG (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839–847

    Article  Google Scholar 

  76. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A, Semenza GL (2011) Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744

    Article  Google Scholar 

  77. Keller KE, Doctor ZM, Dwyer ZW, Lee Y-S (2014) SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell 53:700–709

    Article  Google Scholar 

  78. Keller KE, Tan IS, Lee Y-S (2012) SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science 338:1069–1072

    Article  Google Scholar 

  79. Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW, Burga LN, Xie J, Jurczak MJ, DePinho RA, Clish CB, Jacks T, Kibbey RG, Wulf GM, Vizio D Di, Mills GB, Cantley LC, Vander Heiden MG (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155:397–409

    Article  Google Scholar 

  80. Gao X, Wang H, Yang JJ, Chen J, Jie J, Li L, Zhang Y, Liu Z-R (2013) Reciprocal regulation of protein kinase and pyruvate kinase activities of pyruvate kinase M2 by growth signals. J Biol Chem 288:15971–15979

    Article  Google Scholar 

  81. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Yung WKA, Lu Z (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150:685–696

    Article  Google Scholar 

  82. Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292

    Google Scholar 

  83. Ljungdahl PO, Daignan-Fornier B (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885–929

    Article  Google Scholar 

  84. de Duve C (2005) The lysosome turns fifty. Nat Cell Biol 7:847–849

    Article  Google Scholar 

  85. de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–617

    Article  Google Scholar 

  86. Lim C-Y, Zoncu R (2016) The lysosome as a command-and-control center for cellular metabolism. J Cell Biol 214:653–664

    Article  Google Scholar 

  87. Wiemken A, Dürr M (1975) Characterization of amino acid pools in the vacuolar compartment of Saccharomyces cerevisiae. Arch Microbiol 101:45–57

    Article  Google Scholar 

  88. Boller T, Durr M, Wiemken A (1975) Characterization of a specific transport system for arginine in isolated yeast vacuoles. Eur J Biochem 54:81–91

    Article  Google Scholar 

  89. Messenguy F, Colin D, ten Have JP (1980) Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control . Eur J Biochem 108(2):439–447

  90. Messenguy F, Colin D, Ten Have J-P (1980) Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur J Biochem 108:439–447

    Article  Google Scholar 

  91. Nakamura KD, Schlenk F (1974) Active transport of exogenous S-adenosylmethionine and related compounds into cells and vacuoles of Saccharomyces cerevisiae. J Bacteriol 120:482–487

    Google Scholar 

  92. Svihla G, Schlenk F (1959) Localization of S-adenosylmethionine in candida utilis by ultraviolet microscopy. J Bacteriol 78(4):500–505

  93. Chan SY, Appling DR (2003) Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae. J Biol Chem 278:43051–43059

    Article  Google Scholar 

  94. Soulard A, Cohen A, Hall MN (2009) TOR signaling in invertebrates. Curr Opin Cell Biol 21:825–836

    Article  Google Scholar 

  95. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  Google Scholar 

  96. Albert V, Hall MN (2014) mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 33C:55–66

    Google Scholar 

  97. Kim J, Guan K-L (2011) Amino acid signaling in TOR activation. Annu Rev Biochem 80:1001–1032

    Article  Google Scholar 

  98. Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    Article  Google Scholar 

  99. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78:35–43

    Article  Google Scholar 

  100. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL (1995) Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature 377:441–446

    Article  Google Scholar 

  101. Barbet N, Schneider U, Helliwell S, Stansfield I, Tuite M, Hall MN (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42

    Article  Google Scholar 

  102. Loewith R (2011) A brief history of TOR. Biochem Soc Trans 39:437–442

    Article  Google Scholar 

  103. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468

    Article  Google Scholar 

  104. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674

    Article  Google Scholar 

  105. Gingras A-C, Kennedy SG, O’Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12:502–513

    Article  Google Scholar 

  106. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14:2689–2694

    Article  Google Scholar 

  107. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14:2712–2724

    Article  Google Scholar 

  108. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  Google Scholar 

  109. Powis K, De Virgilio C (2016) Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling. Cell Discov 2:15049

    Article  Google Scholar 

  110. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  Google Scholar 

  111. Tsun Z-Y, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C, Spooner E, Sabatini DM (2013) The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell 52:495–505

    Article  Google Scholar 

  112. Caron A, Richard D, Laplante M (2015) The roles of mTOR complexes in lipid metabolism. Annu Rev Nutr 35:321–348

    Article  Google Scholar 

  113. Loewith R, Hall MN (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177–1201

    Article  Google Scholar 

  114. Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin DE, Hall MN (2008) TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell 7:1819–1830

    Article  Google Scholar 

  115. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    Article  Google Scholar 

  116. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    Article  Google Scholar 

  117. Binda M, Péli-Gulli M-P, Bonfils G, Panchaud N, Urban J, Sturgill TW, Loewith R, De Virgilio C (2009) The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35:563–573

    Article  Google Scholar 

  118. Beugnet A, Tee AR, Taylor PM, Proud CG (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 372:555–566

    Article  Google Scholar 

  119. Wang X, Campbell LE, Miller CM, Proud CG (1998) Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334:261–267

    Article  Google Scholar 

  120. Xu G, Kwon G, Marshall CA, Lin T-A, Lawrence JC Jr, McDaniel ML (1998) Branched-chain amino acids are essential in the regulation of PHAS-I and p70 S6 kinase by pancreatic β-cells A POSSIBLE ROLE IN PROTEIN TRANSLATION AND MITOGENIC SIGNALING. J Biol Chem 273:28178–28184

    Article  Google Scholar 

  121. Jewell JL, Kim YC, Russell RC, Yu F-X, Park HW, Plouffe SW, Tagliabracci VS, Guan K-L (2015) Differential regulation of mTORC1 by leucine and glutamine. Science 347:194–198

    Article  Google Scholar 

  122. Laxman S, Sutter BM, Shi L, Tu BP (2014) Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci Signal 7:ra120

    Article  Google Scholar 

  123. Shimobayashi M, Hall MN (2016) Multiple amino acid sensing inputs to mTORC1. Cell Res 26:7–20

    Article  Google Scholar 

  124. Dyachok J, Earnest S, Iturraran EN, Cobb MH, Ross EM (2016) Amino acids regulate mTORC1 by an obligate two-step mechanism. J Biol Chem 291:22414–22426

    Article  Google Scholar 

  125. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM (2016) The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165:153–164

    Article  Google Scholar 

  126. Rebsamen M, Pochini L, Stasyk T, de Araújo MEG, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KVM, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G (2015) SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519:477–481

    Article  Google Scholar 

  127. Péli-Gulli M-P, Sardu A, Panchaud N, Raucci S, De Virgilio C (2015) Amino acids stimulate TORC1 THROUGH Lst4-Lst7, a GTPase-activating protein complex for the rag family GTPase Gtr2. Cell Rep 13:1–7

    Article  Google Scholar 

  128. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Article  Google Scholar 

  129. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan K-L (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945

    Article  Google Scholar 

  130. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM (2013) A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340:1100–1106

    Article  Google Scholar 

  131. Dechant R, Saad S, Ibáñez AJ, Peter M (2014) Cytosolic pH regulates cell growth through distinct gtpases, Arf1 and Gtr1, to promote ras/PKA and TORC1 activity. Mol Cell 55:409–421

    Article  Google Scholar 

  132. Dechant R, Binda M, Lee SS, Pelet S, Winderickx J, Peter M (2010) Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29:2515–2526

    Article  Google Scholar 

  133. Petit CS, Roczniak-Ferguson A, Ferguson SM (2013) Recruitment of folliculin to lysosomes supports the amino acid–dependent activation of Rag GTPases. J Cell Biol 202:1107–1122

    Article  Google Scholar 

  134. Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C (2012) Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell 46:105–110

    Article  Google Scholar 

  135. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149:410–424

    Article  Google Scholar 

  136. Neklesa TK, Davis RW (2009) A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet 5:e1000515

    Article  Google Scholar 

  137. Panchaud N, Peli-Gulli M-P, De Virgilio C (2013) Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 6:ra42

    Article  Google Scholar 

  138. Spielewoy N, Guaderrama M, Wohlschlegel JA, Ashe M, Yates JR, Wittenberg C (2010) Npr2, Yeast homolog of the human tumor suppressor NPRL2, Is a target of Grr1 required for adaptation to growth on diverse nitrogen sources. Eukaryot Cell 9:592–601

    Article  Google Scholar 

  139. Wu X, Tu BP (2011) Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation. Mol Biol Cell 22:4124–4133

    Article  Google Scholar 

  140. Dokudovskaya S, Rout MP (2011) A novel coatomer-related SEA complex dynamically associates with the vacuole in yeast and is implicated in the response to nitrogen starvation. Autophagy 7:1392–1393

    Article  Google Scholar 

  141. Dutchak PA, Laxman S, Estill SJ, Wang C, Wang Y, Wang Y, Bulut GB, Gao J, Huang LJ, Tu BP (2015) Regulation of hematopoiesis and methionine homeostasis by mTORC1 inhibitor NPRL2. Cell Rep 12:371–379

    Article  Google Scholar 

  142. Dibbens LM, de Vries B, Donatello S, Heron SE, Hodgson BL, Chintawar S, Crompton DE, Hughes JN, Bellows ST, Klein KM, Callenbach PMC, Corbett MA, Gardner AE, Kivity S, Iona X, Regan BM, Weller CM, Crimmins D, O’Brien TJ, Guerrero-López R, Mulley JC, Dubeau F, Licchetta L, Bisulli F, Cossette P, Thomas PQ, Gecz J, Serratosa J, Brouwer OF, Andermann F, Andermann E, van den Maagdenberg AMJM, Pandolfo M, Berkovic SF, Scheffer IE (2013) Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 45:546–551

    Article  Google Scholar 

  143. Peng M, Yin N, Li MO (2014) Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 159:122–133

    Article  Google Scholar 

  144. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, Guan K-L, Karin M, Budanov AV (2014) Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 9:1281–1291

    Article  Google Scholar 

  145. Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM (2014) The sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9:1–8

    Article  Google Scholar 

  146. Kim JS, Ro S-H, Kim M, Park H-W, Semple IA, Park H, Cho U-S, Wang W, Guan K-L, Karin M, Lee JH (2015) Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 5:1–9

    Google Scholar 

  147. Wolfson R, Chantranupong L, Saxton R, Shen K, Scaria S, Cantor J, Sabatini DM (2015) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351:43–48

    Article  Google Scholar 

  148. Saxton RA, Knockenhauer KE, Wolfson RL, Chantranupong L, Pacold ME, Wang T, Schwartz TU, Sabatini DM (2015) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351:1–10

    Google Scholar 

  149. Lee JH, Budanov AV, Karin M (2013) Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 18:792–801

    Article  Google Scholar 

  150. Perera RM, Zoncu R (2016) The lysosome as a regulatory hub. Annu Rev Cell Dev Biol 32:223–253

    Article  Google Scholar 

  151. Wang S, Tsun Z, Wolfson R, Shen K, Wyant G, Plovanich M, Yuan E, Jones T, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini B, Sabatini D (2015) Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347:188–194

    Article  Google Scholar 

  152. Stransky LA, Forgac M (2015) Amino acid availability modulates vacuolar H+-ATPase assembly. J Biol Chem 290:27360–27369

    Article  Google Scholar 

  153. Kingsbury JM, Sen ND, Maeda T, Heitman J, Cardenas ME (2014) Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics 196:1077–1089

    Article  Google Scholar 

  154. Zurita-Martinez SA, Puria R, Pan X, Boeke JD, Cardenas ME (2007) Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 176:2139–2150

    Article  Google Scholar 

  155. Yoon M-S, Son K, Arauz E, Han JM, Kim S, Chen J (2016) Leucyl-tRNA synthetase activates Vps34 in amino acid-sensing mTORC1 signaling. Cell Rep 16:1510–1517

    Article  Google Scholar 

  156. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals for the lysosome: a control center for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14:283–296

    Article  Google Scholar 

  157. Russell RC, Yuan H-X, Guan K-L (2014) Autophagy regulation by nutrient signaling. Cell Res 24:42–57

    Article  Google Scholar 

  158. Noda NN, Inagaki F (2015) Mechanisms of autophagy. Annu Rev Biophys 44:101–122

    Article  Google Scholar 

  159. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol

  160. Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273(7):3963–3966

    Article  Google Scholar 

  161. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24:9–23

    Article  Google Scholar 

  162. Jung CH, Ro S-H, Cao J, Otto NM, Kim D-H (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295

    Article  Google Scholar 

  163. Ben-Sahra I, Howell JJ, Asara JM, Manning BD (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339:1323–1328

    Article  Google Scholar 

  164. Robitaille AM, Christen S, Shimobayashi M, Cornu M, Fava LL, Moes S, Prescianotto-Baschong C, Sauer U, Jenoe P, Hall MN (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339:1320–1323

    Article  Google Scholar 

  165. Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM, Manning BD (2016) mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351:728–733

    Article  Google Scholar 

  166. Kingsbury JM, Sen ND, Cardenas ME (2015) Branched-Chain Aminotransferases Control TORC1 Signaling in Saccharomyces cerevisiae. PLoS Genet 11:1–24

    Article  Google Scholar 

  167. Morita M, Gravel SP, Chénard V, Sikström K, Zheng L, Alain T, Gandin V, Avizonis D, Arguello M, Zakaria C, McLaughlan S, Nouet Y, Pause A, Pollak M, Gottlieb E, Larsson O, St-Pierre J, Topisirovic I, Sonenberg N (2013) MTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab 18:698–711

    Article  Google Scholar 

  168. Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15:155–162

    Article  Google Scholar 

Download references

Acknowledgements

SL would like to thank Adhish Walvekar and Ritu Gupta for assistance with the figures. An intermediate fellowship from the Wellcome Trust-DBT India Alliance (IA/I/14/2/50123) and funding from the DBT (BT/PR13446/COE/34/30/2015) to SL support the SL lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Laxman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laxman, S. Conceptualizing Eukaryotic Metabolic Sensing and Signaling. J Indian Inst Sci 97, 59–77 (2017). https://doi.org/10.1007/s41745-016-0013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-016-0013-1

Keywords

Navigation