Skip to main content
Log in

The Review of Ecological Network Indicators in Graph Theory Context: 2014–2021

  • Review article
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Graph theory (GT) is extensively applied in the ecological network analysis. This review study aimed to examine GT in the field of ecological network analysis based on the following questions: In what areas are the articles focused?, what indexes or graph-based indicators have been thus far utilized in ecological network analysis?, and what aspects of ecological network analysis have been less considered in terms of the use of the GT indicators? To address these questions, a systematic literature review was conducted and the results showed that most of the articles in this field had been fulfilled in China, the United States, and France. This theory could have implications for more research on plants and mammals. In addition, 118 indicators were identified in the field of GT in the ecological network analysis. Among these indicators, the probability of connectivity (PC) and an integral index of connectivity (IIC) had been consistently exploited in most articles. Moreover, the results revealed the increasing trend of introducing the new indicators of GT to ecological network analysis, suggesting the applicability of GT in this context. Despite the importance of ecological network resilience, it has been less reflected from the GT perspective while it can be useful and efficient in analyzing the sustainability of ecological networks within this framework. The current trend of exploiting the GT indicators delineates three future lines of development, viz. (1) the GT use more widely in ecological network analysis, (2) emerging new and more precise indexes, and (3) new concerns mainly examining ecological network resilience.

Article Highlights

  • China (16.67%), the USA (13.15%), and France (13.15%) have the highest number of studies in term of investigation the geographical distribution.

  • Total of 118 indexes were used 485 times and the probability of connectivity, integral index of connectivity and least-cost-path algorithm is widely used in graph theory context.

  • The indexes PC (probability of connectivity), IIC (integral index of connectivity), and LCP (least-cost-path algorithm) extensively used in different studies.

  • The ecological networks resilience in graph theory milieu is the major identified gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

Data and materials are not available online.

References

  • Ahmadi M, Farhadinia MS, Cushman SA, Hemami M-R, Nezami Balouchi B, Jowkar H, Macdonald DW (2020) Species and space: a combined gap analysis to guide management planning of conservation areas. Landsc Ecol 35:1505–1517

    Article  Google Scholar 

  • Albert CH, Rayfield B, Dumitru M, Gonzalez A (2017) Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv Biol 31(6):1383–1396

    Article  Google Scholar 

  • Almenar JB, Bolowich A, Elliot T, Geneletti D, Sonnemann G, Rugani B (2019) Assessing habitat loss, fragmentation and ecological connectivity in Luxembourg to support spatial planning. Landsc Urban Plan 189:335–351

    Article  Google Scholar 

  • Álvarez-Romero JG, Munguía-Vega A, Beger M, del Mar Mancha-Cisneros M, Suárez-Castillo AN, Gurney GG et al (2018) Designing connected marine reserves in the face of global warming. Glob Change Biol 24(2):e671–e691

    Article  Google Scholar 

  • Amui LBL, Jabbour CJC, de Sousa Jabbour ABL, Kannan D (2017) Sustainability as a dynamic organizational capability: a systematic review and a future agenda toward a sustainable transition. J Clean Prod 142:308–322

    Article  Google Scholar 

  • An Y, Liu S, Sun Y, Shi F, Zhao S (2020) Negative effects of farmland expansion on multi-species landscape connectivity in a tropical region in Southwest China. Agric Syst 179:102766

    Article  Google Scholar 

  • An Y, Liu S, Sun Y, Shi F, Beazley R (2021) Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc Ecol 36(7):2059–2076

    Article  Google Scholar 

  • Anderson TM, Dragićević S (2018) Network-agent based model for simulating the dynamic spatial network structure of complex ecological systems. Ecol Model 389:19–32

    Article  Google Scholar 

  • Anderson T, Dragićević S (2020) A geographic network automata approach for modeling dynamic ecological systems. Geogr Anal 52(1):3–27

    Article  Google Scholar 

  • Appolloni L, Sandulli R, Vetrano G, Russo G (2018) Assessing the effects of habitat patches ensuring propagule supply and different costs inclusion in marine spatial planning through multivariate analyses. J Environ Manag 214:45–55

    Article  CAS  Google Scholar 

  • Ascensao F, Mestre F, Barbosa AM (2019) Prioritizing road defragmentation using graph-based tools. Landsc Urban Plan 192:103653

    Article  Google Scholar 

  • Avon C, Bergès L (2016) Prioritization of habitat patches for landscape connectivity conservation differs between least-cost and resistance distances. Landsc Ecol 31(7):1551–1565

    Article  Google Scholar 

  • Ayram CAC, Mendoza ME, Salicrup DRP, Granados EL (2014) Identifying potential conservation areas in the Cuitzeo Lake basin, Mexico by multitemporal analysis of landscape connectivity. J Nat Conserv 22(5):424–435

    Article  Google Scholar 

  • Ayram CAC, Mendoza ME, Etter A, Salicrup DRP (2017) Anthropogenic impact on habitat connectivity: a multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecol Ind 72:895–909

    Article  Google Scholar 

  • Barnett K, Belote RT (2021) Modeling an aspirational connected network of protected areas across North America. Ecol Appl 31:e2387

    Article  Google Scholar 

  • Beaujean S, Nor ANM, Brewer T, Zamorano JG, Dumitriu AC, Harris J, Corstanje R (2021) A multistep approach to improving connectivity and co-use of spatial ecological networks in cities. Landsc Ecol 36:2077–2093

    Article  Google Scholar 

  • Berges L, Avon C, Bezombes L, Clauzel C, Duflot R, Foltête J-C et al (2020) Environmental mitigation hierarchy and biodiversity offsets revisited through habitat connectivity modelling. J Environ Manag 256:109950

    Article  Google Scholar 

  • Bergsten A, Galafassi D, Bodin Ö (2014) The problem of spatial fit in social-ecological systems: detecting mismatches between ecological connectivity and land management in an urban region. Ecology and Society 19(4)

  • Berniker E, Wolf F (2001) Managing complex technical systems: working on a bridge of uncertainty. In: Proceedings of the Tenth International Association for the Management of Technology, Lausanne, Switzerland

  • Betbeder J, Laslier M, Hubert-Moy L, Burel F, Baudry J (2017) Synthetic Aperture Radar (SAR) images improve habitat suitability models. Landsc Ecol 32(9):1867–1879

    Article  Google Scholar 

  • Bian Z, Liu L, Ding S (2021) Analysis of forest landscape restoration based on landscape connectivity: a case study in the Yi River Basin, China, during 2015–2020. Land 10(9):904

    Article  Google Scholar 

  • Bishop-Taylor R, Tulbure MG, Broich M (2015) Surface water network structure, landscape resistance to movement and flooding vital for maintaining ecological connectivity across Australia’s largest river basin. Landscape Ecol 30(10):2045–2065

    Article  Google Scholar 

  • Bishop-Taylor R, Tulbure MG, Broich M (2018) Evaluating static and dynamic landscape connectivity modelling using a 25-year remote sensing time series. Landsc Ecol 33(4):625–640

    Article  Google Scholar 

  • Borrett SR, Scharler UM (2019) Walk partitions of flow in ecological network analysis: review and synthesis of methods and indicators. Ecol Indic 106:105451

    Article  Google Scholar 

  • Borrett SR, Moody J, Edelmann A (2014) The rise of network ecology: maps of the topic diversity and scientific collaboration. Ecol Model 293:111–127

    Article  Google Scholar 

  • Borrett SR, Sheble L, Moody J, Anway EC (2018) Bibliometric review of ecological network analysis: 2010–2016. Ecol Model 382:63–82

    Article  Google Scholar 

  • Bourgeois M, Sahraoui Y (2020) Modelling in the context of an environmental mobilisation: A graph-based approach for assessing the landscape ecological impacts of a highway project. Ekológia (bratislava) 39(1):88–100

    Article  Google Scholar 

  • Brown ML, Donovan TM, Mickey RM, Warrington GS, Schwenk WS, Theobald DM (2018) Predicting effects of future development on a territorial forest songbird: methodology matters. Landsc Ecol 33(1):93–108

    Article  Google Scholar 

  • Cabarga Varona A, Arroyo Hailvoto NL, Nogués Linares S (2016) The function of plantation forestry in landscape connectivity. Appl Ecol Env Res 14:527–542

    Article  Google Scholar 

  • Cadavid-Florez L, Laborde J, Mclean DJ (2020) Isolated trees and small woody patches greatly contribute to connectivity in highly fragmented tropical landscapes. Landsc Urban Plan 196:103745

    Article  Google Scholar 

  • Calabrese JM, Fagan WF (2004) A comparison-shopper’s guide to connectivity metrics. Front Ecol Environ 2(10):529–536

    Article  Google Scholar 

  • Callahan JL (2014) Writing literature reviews: a reprise and update. Sage, Los Angeles

    Google Scholar 

  • Carroll C, Parks SA, Dobrowski SZ, Roberts DR (2018) Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob Change Biol 24(11):5318–5331

    Article  Google Scholar 

  • Castillo JA, Epps CW, Jeffress MR, Ray C, Rodhouse TJ, Schwalm D (2016) Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas. Ecol Appl 26(6):1660–1676

    Article  Google Scholar 

  • Chaput-Bardy A, Alcala N, Secondi J, Vuilleumier S (2017) Network analysis for species management in rivers networks: application to the Loire River. Biol Conserv 210:26–36

    Article  Google Scholar 

  • Chen C, Meurk CD, Jia Z, Lv M, Wu S, Jia J (2017) Incorporating landscape connectivity into household pond configuration in a hilly agricultural landscape. Landsc Ecol Eng 13(1):189–204

    Article  Google Scholar 

  • Cheng F, Liu S, Hou X, Zhang Y, Dong S (2018) Response of bioenergy landscape patterns and the provision of biodiversity ecosystem services associated with land-use changes in Jinghong County, Southwest China. Landsc Ecol 33(5):783–798

    Article  Google Scholar 

  • Cheung AKL, Brierley G, O’Sullivan D (2016) Landscape structure and dynamics on the Qinghai-Tibetan Plateau. Ecol Model 339:7–22

    Article  Google Scholar 

  • Clauzel C, Godet C (2020) Combining spatial modeling tools and biological data for improved multispecies assessment in restoration areas. Biol Conserv 250:108713

    Article  Google Scholar 

  • Clauzel C, Bannwarth C, Foltete J-C (2015a) Integrating regional-scale connectivity in habitat restoration: An application for amphibian conservation in eastern France. J Nat Conserv 23:98–107

    Article  Google Scholar 

  • Clauzel C, Xiqing D, Gongsheng W, Giraudoux P, Li L (2015b) Assessing the impact of road developments on connectivity across multiple scales: application to Yunnan snub-nosed monkey conservation. Biol Conserv 192:207–217

    Article  Google Scholar 

  • Clauzel C, Jeliazkov A, Mimet A (2018) Coupling a landscape-based approach and graph theory to maximize multispecific connectivity in bird communities. Landsc Urban Plan 179:1–16

    Article  Google Scholar 

  • Colino-Rabanal VJ, Arribas ÓJ, Lizana M (2021) Connectivity predicts presence but not population density in the habitat-specific Mountain Lizard Iberolacerta martinezricai. Sustainability 13(5):2647

    Article  Google Scholar 

  • Correa Ayram C, Mendoza M, Etter A, Pérez Salicrup D (2017) Potential distribution of mountain cloud forest in Michoacán, Mexico: prioritization for conservation in the context of landscape connectivity. Environ Manag 60(1):86–103

    Article  Google Scholar 

  • Corro EJ, Ahuatzin DA, Jaimes AA, Favila ME, Ribeiro MC, López-Acosta JC, Dáttilo W (2019) Forest cover and landscape heterogeneity shape ant–plant co-occurrence networks in human-dominated tropical rainforests. Landsc Ecol 34(1):93–104

    Article  Google Scholar 

  • Cossart E, Fressard M (2017). Assessment of structural sediment connectivity within catchments: insights from graph theory

  • Creech TG, Epps CW, Monello RJ, Wehausen JD (2014) Using network theory to prioritize management in a desert bighorn sheep metapopulation. Landsc Ecol 29(4):605–619

    Article  Google Scholar 

  • Crist MR, Knick ST, Hanser SE (2017) Range-wide connectivity of priority areas for Greater Sage-Grouse: implications for long-term conservation from graph theory. Condor Ornithol Appl 119(1):44–57

    Google Scholar 

  • Cui B, Shao X, Zhang Z (2015) Assessment of flow paths and confluences for saltwater intrusion in a deltaic river network. Hydrol Process 29(20):4549–4558

    Article  Google Scholar 

  • Cui N, Feng C-C, Wang D, Li J, Guo L (2018) The effects of rapid urbanization on forest landscape connectivity in Zhuhai city, China. Sustainability 10(10):3381

    Article  Google Scholar 

  • Cui L, Wang J, Sun L, Lv C (2020) Construction and optimization of green space ecological networks in urban fringe areas: a case study with the urban fringe area of Tongzhou district in Beijing. J Clean Prod 276:124266

    Article  Google Scholar 

  • d’Acampora BH, Higueras E, Román E (2018) Combining different metrics to measure the ecological connectivity of two mangrove landscapes in the Municipality of Florianópolis, Southern Brazil. Ecol Model 384:103–110

    Article  Google Scholar 

  • de la Sancha NU, Boyle SA, McIntyre NE (2021a) Identifying structural connectivity priorities in eastern Paraguay’s fragmented Atlantic Forest. Sci Rep 11(1):1–14

    CAS  Google Scholar 

  • de la Sancha NU, Boyle SA, McIntyre NE, Brooks DM, Yanosky A, Cuellar Soto E et al (2021b) The disappearing Dry Chaco, one of the last dry forest systems on earth. Landscape Ecol 36(10):2997–3012

    Article  Google Scholar 

  • De Montis A, Caschili S, Mulas M, Modica G, Ganciu A, Bardi A et al (2016) Urban–rural ecological networks for landscape planning. Land Use Policy 50:312–327

    Article  Google Scholar 

  • Delmas E, Besson M, Brice MH, Burkle LA, Dalla Riva GV, Fortin MJ et al (2019) Analysing ecological networks of species interactions. Biol Rev 94(1):16–36

    Article  Google Scholar 

  • Devi S, Murthy MR, Bijan D, Jha C (2016) Identification of potential habitat patches for connectivity using weighted linear combination (WLC) and integral index of connectivity (IIC) at East Godavari District, Andhra Pradesh, India. J Indian Soc Remote Sens 44(3):385–394

    Article  Google Scholar 

  • Dilts TE, Weisberg PJ, Leitner P, Matocq MD, Inman RD, Nussear KE, Esque TC (2016) Multiscale connectivity and graph theory highlight critical areas for conservation under climate change. Ecol Appl 26(4):1223–1237

    Article  Google Scholar 

  • Dondina O, Saura S, Bani L, Mateo-Sánchez MC (2018) Enhancing connectivity in agroecosystems: focus on the best existing corridors or on new pathways? Landsc Ecol 33(10):1741–1756

    Article  Google Scholar 

  • Drake JC, Griffis-Kyle K, McIntyre NE (2017) Using nested connectivity models to resolve management conflicts of isolated water networks in the Sonoran Desert. Ecosphere 8(1):e01652

    Article  Google Scholar 

  • Duane A, Miranda MD, Brotons L (2021) Forest connectivity percolation thresholds for fire spread under different weather conditions. For Ecol Manag 498:119558

    Article  Google Scholar 

  • Ernst BW (2014a) Quantifying connectivity using graph based connectivity response curves in complex landscapes under simulated forest management scenarios. For Ecol Manag 321:94–104

    Article  Google Scholar 

  • Ernst BW (2014b) Quantifying landscape connectivity through the use of connectivity response curves. Landsc Ecol 29(6):963–978

    Article  Google Scholar 

  • Fath BD, Scharler UM, Ulanowicz RE, Hannon B (2007) Ecological network analysis: network construction. Ecol Model 208(1):49–55

    Article  Google Scholar 

  • Fath BD, Asmus H, Asmus R, Baird D, Borrett SR, de Jonge VN et al (2019) Ecological network analysis metrics: the need for an entire ecosystem approach in management and policy. Ocean Coast Manag 174:1–14

    Article  Google Scholar 

  • Ferrari JR, Preisser EL, Fitzpatrick MC (2014) Modeling the spread of invasive species using dynamic network models. Biol Invasions 16(4):949–960

    Article  Google Scholar 

  • Figlus T, Musiaka Ł (2020) Analysis of morphological changes of rural settlement patterns after World War II in the metropolitan area of Łódź using a graph theory based method. Environ Socio Econ Stud 8(4):57–72

    Article  Google Scholar 

  • Foltête J-C (2018) A parcel-based graph to match connectivity analysis with field action in agricultural landscapes: is node removal a reliable method? Landsc Urban Plan 178:32–42

    Article  Google Scholar 

  • Foltête J-C, Vuidel G (2017) Using landscape graphs to delineate ecologically functional areas. Landsc Ecol 32(2):249–263

    Article  Google Scholar 

  • Foltête J-C, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150

    Article  Google Scholar 

  • Foltête J-C, Couval G, Fontanier M, Vuidel G, Giraudoux P (2016) A graph-based approach to defend agro-ecological systems against water vole outbreaks. Ecol Ind 71:87–98

    Article  Google Scholar 

  • Foltête J-C, Savary P, Clauzel C, Bourgeois M, Girardet X, Sahraoui Y et al (2020) Coupling landscape graph modeling and biological data: a review. Landsc Ecol 35(5):1035–1052

    Article  Google Scholar 

  • Fourie L, Rouget M, Lötter M (2015) Landscape connectivity of the grassland biome in Mpumalanga, South Africa. Austral Ecol 40(1):67–76

    Article  Google Scholar 

  • Fressard M, Cossart E (2019) A graph theory tool for assessing structural sediment connectivity: development and application in the Mercurey vineyards (France). Sci Total Environ 651:2566–2584

    Article  CAS  Google Scholar 

  • Galantinho A, Herrera JM, Eufrázio S, Silva C, Carvalho F, Alpizar-Jara R, Mira A (2020) Road verges provide connectivity for small mammals: a case study with wood mice (Apodemus sylvaticus) in an agro-silvo pastoral system. J Environ Manag 258:110033

    Article  Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144(1):44–55

    Article  Google Scholar 

  • Gao Y, Ma L, Liu J, Zhuang Z, Huang Q, Li M (2017) Constructing ecological networks based on habitat quality assessment: a case study of Changzhou, China. Sci Rep 7:46073. https://doi.org/10.1038/srep46073

    Article  CAS  Google Scholar 

  • Garcia-Lozano C, Varga D, Pintó J, Roig-Munar FX (2020) Landscape connectivity and suitable habitat analysis for wolves (Canis lupus L.) in the Eastern Pyrenees. Sustainability 12(14):5762

    Article  Google Scholar 

  • Ghehi NK, MalekMohammadi B, Jafari H (2020) Integrating habitat risk assessment and connectivity analysis in ranking habitat patches for conservation in protected areas. J Nat Conserv 56:125867

    Article  Google Scholar 

  • Giannini TC, Tambosi LR, Acosta AL, Jaffé R, Saraiva AM, Imperatriz-Fonseca VL, Metzger JP (2015) Safeguarding ecosystem services: a methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS ONE 10(6):e0129225

    Article  CAS  Google Scholar 

  • Girardet X, Conruyt-Rogeon G, Foltête J-C (2015) Does regional landscape connectivity influence the location of roe deer roadkill hotspots? Eur J Wildl Res 61(5):731–742

    Article  Google Scholar 

  • Glaser BG, Strauss AL (2017) Discovery of grounded theory: strategies for qualitative research. Routledge, London

    Book  Google Scholar 

  • Godet C, Clauzel C (2021) Comparison of landscape graph modelling methods for analysing pond network connectivity. Landscape Ecol 36(3):735–748. https://doi.org/10.1007/s10980-020-01164-9

    Article  Google Scholar 

  • Goulart FF, Takahashi FS, Rodrigues M, Machado RB, Soares-Filho B (2015) Where matrix quality most matters? Using connectivity models to assess effectiveness of matrix conversion in the Atlantic Forest. Natureza & Conservação 13(1):47–53

    Article  Google Scholar 

  • Grant MJ, Booth A (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf Libr J 26(2):91–108

    Article  Google Scholar 

  • Grech A, Hanert E, McKenzie L, Rasheed M, Thomas C, Tol S et al (2018) Predicting the cumulative effect of multiple disturbances on seagrass connectivity. Glob Change Biol 24(7):3093–3104

    Article  Google Scholar 

  • Gross JL, Yellen J (2005) Graph theory and its applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Gurrutxaga M, Saura S (2014) Prioritizing highway defragmentation locations for restoring landscape connectivity. Environ Conserv 41(2):157–164

    Article  Google Scholar 

  • Guzmán-Colón DK, Pidgeon AM, Martinuzzi S, Radeloff VC (2020) Conservation planning for island nations: using a network analysis model to find novel opportunities for landscape connectivity in Puerto Rico. Glob Ecol Conserv 23:e01075

    Article  Google Scholar 

  • Han Q, Keeffe G (2019) Stepping stones: assessing the permeability of urban greenspaces to climate-driven migration of trees. Smart Sustain Built Environ. https://doi.org/10.1108/SASBE-12-2018-0065

    Article  Google Scholar 

  • Han Q, Keeffe G (2021) Promoting climate-driven forest migration through large-scale urban afforestation. Landsc Urban Plan 212:104124. https://doi.org/10.1016/j.lurbplan.2021.104124

    Article  Google Scholar 

  • Hardin G (1968) The tragedy of the commons: the population problem has no technical solution; it requires a fundamental extension in morality. Science 162(3859):1243–1248

    Article  CAS  Google Scholar 

  • Hardt E, Borgomeo E, dos Santos RF, Pinto LFG, Metzger JP, Sparovek G (2015) Does certification improve biodiversity conservation in Brazilian coffee farms? For Ecol Manag 357:181–194

    Article  Google Scholar 

  • Harris KM, Dickinson KJ, Whigham PA (2014) Functional connectivity and matrix quality: network analysis for a critically endangered New Zealand lizard. Landsc Ecol 29(1):41–53

    Article  Google Scholar 

  • He J, Huang J, Liu D, Wang H, Li C (2018) Updating the habitat conservation institution by prioritizing important connectivity and resilience providers outside. Ecol Ind 88:219–231

    Article  Google Scholar 

  • Heer H, Streib L, Schafer RB, Dieckmann U (2021) Indicators for assessing the robustness of metapopulations against habitat loss. Ecol Ind 121:13. https://doi.org/10.1016/j.ecolind.2020.106809

    Article  Google Scholar 

  • Heinonen T (2019) Developing landscape connectivity in commercial boreal forests using minimum spanning tree and spatial optimization. Can J for Res 49(10):1198–1206

    Article  Google Scholar 

  • Heintzman L, McIntyre N (2021) Assessment of playa wetland network connectivity for amphibians of the south-central Great Plains (USA) using graph-theoretical, least-cost path, and landscape resistance modelling. Landsc Ecol 36(4):1117–1135

    Article  Google Scholar 

  • Hejkal J, Buttschardt TK, Klaus VH (2017) Connectivity of public urban grasslands: implications for grassland conservation and restoration in cities. Urban Ecosyst 20(2):511–519

    Article  Google Scholar 

  • Herrera L, Sabatino M, Gastón A, Saura S (2017) Grassland connectivity explains entomophilous plant species assemblages in an agricultural landscape of the Pampa Region, Argentina. Austr Ecol 42(4):486–496

    Article  Google Scholar 

  • Hidalgo PJ, Hernández H, Sánchez-Almendro AJ, López-Tirado J, Vessella F, Porras R (2021) Fragmentation and connectivity of island forests in agricultural mediterranean environments: a comparative study between the Guadalquivir Valley (Spain) and the Apulia Region (Italy). Forests 12(9):1201

    Article  Google Scholar 

  • Hofman MP, Hayward MW, Kelly MJ, Balkenhol N (2018) Enhancing conservation network design with graph-theory and a measure of protected area effectiveness: Refining wildlife corridors in Belize, Central America. Landsc Urban Plan 178:51–59

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4(1):1–23

    Article  Google Scholar 

  • Holling CS (1996) Engineering resilience versus ecological resilience. Eng Ecol Constraints 31(1996):32

    Google Scholar 

  • Holt RD (2017) Species coexistence. In: Reference module in life sciences. Elsevier

  • Huang Y, Liao T-J (2019) An integrating approach of cellular automata and ecological network to predict the impact of land use change on connectivity. Ecol Ind 98:149–157

    Article  Google Scholar 

  • Huang J, He J, Liu D, Li C, Qian J (2018) An ex-post evaluation approach to assess the impacts of accomplished urban structure shift on landscape connectivity. Sci Total Environ 622:1143–1152

    Article  CAS  Google Scholar 

  • Huang B-X, Chiou S-C, Li W-Y (2021) Landscape pattern and ecological network structure in urban green space planning: a case study of Fuzhou City. Land 10(8):769. https://doi.org/10.3390/land10080769

    Article  Google Scholar 

  • Huang X, Wang H, Shan L, Xiao F (2021bc) Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecol Indic 132:108319

    Article  Google Scholar 

  • Huang P, Du F, Yang S, Liu C (2016) Forest landscape connectivity change analysis in the Yangtze River basin by multi-temporal satellite data. Indian J Mar Sci 45(12):1645–1651

    Google Scholar 

  • Ishiyama N, Akasaka T, Nakamura F (2014) Mobility-dependent response of aquatic animal species richness to a wetland network in an agricultural landscape. Aquat Sci 76(3):437–449

    Article  Google Scholar 

  • Ishiyama N, Koizumi I, Yuta T, Nakamura F (2015) Differential effects of spatial network structure and scale on population size and genetic diversity of the ninespine stickleback in a remnant wetland system. Freshw Biol 60(4):733–744

    Article  Google Scholar 

  • Ishiyama N, Miura K, Yamanaka S, Negishi JN, Nakamura F (2020) Contribution of small isolated habitats in creating refuges from biological invasions along a geomorphological gradient of floodplain waterbodies. J Appl Ecol 57(3):548–558

    Article  Google Scholar 

  • Islam M, Quinn M (2021) A composite graph theoretic approach to modeling landscape connectivity for wildlife movement in Western Canada. J Environ Inform Lett 6(2):103–113

    Google Scholar 

  • Iswoyo H, Dariati T, Vale B, Bryant M (2018) Contribution of urban farms to urban ecology of a developing city. In: Paper presented at the IOP conference series: earth and environmental science

  • Jahanishakib F, Salmanmahiny A, Mirkarimi SH, Poodat F (2021) Hydrological connectivity assessment of landscape ecological network to mitigate development impacts. J Environ Manag 296:113169

    Article  Google Scholar 

  • Janssen MA, Bodin Ö, Anderies JM, Elmqvist T, Ernstson H, McAllister RR et al (2006) Toward a network perspective of the study of resilience in social-ecological systems. Ecol Soc 11(1). Art, 15. http://www.jstor.org/stable/26267803

  • Johnston CA, McIntyre NE (2019) Effects of cropland encroachment on prairie pothole wetlands: numbers, density, size, shape, and structural connectivity. Landsc Ecol 34(4):827–841

    Article  Google Scholar 

  • Kang W, Minor ES, Lee D, Park C-R (2016) Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea. Acta Oecol 71:31–38

    Article  Google Scholar 

  • Kang W, Thorne JH, Kim G, Lee D, Song Y (2019) Conserving terrestrial linkages that connect natural landscapes of the Korean Peninsula. Environ Monit Assess 191(6):1–11

    Article  Google Scholar 

  • Khosravi R, Hemami M-R, Malekian M, Silva TL, Rezaei H-R, Brito JC (2018) Effect of landscape features on genetic structure of the goitered gazelle (Gazella subgutturosa) in Central Iran. Conserv Genet 19(2):323–336

    Article  Google Scholar 

  • Kleinman J, Goode J, Fries A, Hart J (2019) Ecological consequences of compound disturbances in forest ecosystems: a systematic review. Ecosphere 10(11):e02962

    Article  Google Scholar 

  • Kneitel JM (2019) Gause’s competitive exclusion principle. In: Encyclopedia of ecology. Elsevier B.V., pp. 110–113. https://doi.org/10.1016/B978-0-12-409548-9.00816-2

  • Koohafkan MC, Gibson S (2018) Geomorphic trajectory and landform analysis using graph theory: a panel data approach to quantitative geomorphology. Progr Phys Geogr Earth Environ 42(6):679–696

    Article  Google Scholar 

  • Kruk M, Paturej E (2020) Indices of trophic and competitive relations in a planktonic network of a shallow, temperate lagoon. A graph and structural equation modeling approach. Ecol Indic 112:106007

    Article  Google Scholar 

  • Kwon O-S, Kim J-H, Ra J-H (2021) landscape ecological analysis of green network in urban area using circuit theory and least-cost path. Land 10(8):847

    Article  Google Scholar 

  • Layeghifard M, Makarenkov V, Peres-Neto PR (2015) Spatial and species compositional networks for inferring connectivity patterns in ecological communities. Glob Ecol Biogeogr 24(6):718–727

    Article  Google Scholar 

  • Le Roux M, Redon M, Archaux F, Long J, Vincent S, Luque S (2017) Conservation planning with spatially explicit models: a case for horseshoe bats in complex mountain landscapes. Landsc Ecol 32(5):1005–1021

    Article  Google Scholar 

  • Lechner AM, Doerr V, Harris RM, Doerr E, Lefroy EC (2015a) A framework for incorporating fine-scale dispersal behaviour into biodiversity conservation planning. Landsc Urban Plan 141:11–23

    Article  Google Scholar 

  • Lechner AM, Harris RM, Doerr V, Doerr E, Drielsma M, Lefroy EC (2015b) From static connectivity modelling to scenario-based planning at local and regional scales. J Nat Conserv 28:78–88

    Article  Google Scholar 

  • Lewis TG (2019) Critical infrastructure protection in homeland security: defending a networked nation. Wiley, Hoboken

    Google Scholar 

  • Li W, Clauzel C, Dai Y, Wu G, Giraudoux P, Li L (2017) Improving landscape connectivity for the Yunnan snub-nosed monkey through cropland reforestation using graph theory. J Nat Conserv 38:46–55

    Article  Google Scholar 

  • Li X, Du J, Long H (2019) Green development behavior and performance of industrial enterprises based on grounded theory study: evidence from China. Sustainability 11(15):4133

    Article  Google Scholar 

  • Li Y-Y, Zhang Y-Z, Jiang Z-Y, Guo C-X, Zhao M-Y, Yang Z-G et al (2021) Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: a case study in Shenzhen City, China. Ecol Process 10(1):1–15

    Article  Google Scholar 

  • Lima FG, Diniz MF, Mendes P (2021) Ranking habitat importance for small wildcats in the Brazilian savanna: landscape connectivity as a conservation tool. Biologia 76(5):1517–1527

    Google Scholar 

  • Lin Y, An W, Gan M, Shahtahmassebi A, Ye Z, Huang L et al (2021) Spatial grain effects of urban green space cover maps on assessing habitat fragmentation and connectivity. Land 10(10):1065

    Article  Google Scholar 

  • Linnell MA, Lesmeister DB (2019) Landscape connectivity and conservation prioritization for an old forest species with limited vagility. Anim Conserv 22(6):568–578

    Article  Google Scholar 

  • Liu S, Deng L, Chen L, Li J, Dong S, Zhao H (2014) Landscape network approach to assess ecological impacts of road projects on biological conservation. Chin Geogr Sci 24(1):5–14. https://doi.org/10.1007/s11769-014-0651-z

    Article  Google Scholar 

  • Liu J, Engel BA, Dai L, Wang Y, Wu Y, Yan G et al (2019) Capturing hydrological connectivity structure of wetlands with indices based on graph theory: A case study in Yellow River Delta. J Clean Prod 239:118059

    Article  Google Scholar 

  • Liu W, Hughes AC, Bai Y, Li Z, Mei C, Ma Y (2020) Using landscape connectivity tools to identify conservation priorities in forested areas and potential restoration priorities in rubber plantation in Xishuangbanna, Southwest China. Landsc Ecol 35(2):389–402

    Article  Google Scholar 

  • Liu S, Wang F, Deng L, Dong Y, Liu Y (2021) Multi-scale ecological connectivity dynamics associated with hydropower station: a case study in the Lancang River Valley. Front Ecol Evol. https://doi.org/10.3389/fevo.2020.616356

    Article  Google Scholar 

  • Lloyd MW, Widmeyer PA, Neel MC (2016) Temporal variability in potential connectivity of Vallisneria americana in the Chesapeake Bay. Landsc Ecol 31(10):2307–2321

    Article  Google Scholar 

  • Lobato-de Magalhaes T, Rico Y, Cabrera-Toledo D, Martinez M (2020) Plant functional connectivity of Nymphoides fallax in geographically isolated temporary wetlands in Mexican highlands. Aquat Bot 164:103215

    Article  Google Scholar 

  • López DN, Camus PA, Valdivia N, Estay SA (2019) Integrating species and interactions into similarity metrics: a graph theory-based approach to understanding community similarity. PeerJ 7:e7013

    Article  Google Scholar 

  • Loro M, Ortega E, Arce RM, Geneletti D (2015) Ecological connectivity analysis to reduce the barrier effect of roads. An innovative graph-theory approach to define wildlife corridors with multiple paths and without bottlenecks. Landsc Urban Plan 139:149–162

    Article  Google Scholar 

  • Luo Z, Yu H, Pu Y, Yang J, Mei H, Wang D et al (2016) Assessment of habitat fragmentation and corridors for an isolated subspecies of the Sichuan golden snub-nosed monkey, Rhinopithecus roxellana hubeiensis. Int J Primatol 37(3):438–459

    Article  CAS  Google Scholar 

  • Luo Y, Wu J, Wang X, Wang Z, Zhao Y (2020) Can policy maintain habitat connectivity under landscape fragmentation? A case study of Shenzhen, China. Sci Total Environ 715:136829

    Article  CAS  Google Scholar 

  • Machado R, Santos P (2019) Does wild rabbit population size affect connectivity? World Rabbit Sci 27(4):207–216

    Article  Google Scholar 

  • Machado R, Godinho S, Guiomar N, Gil A, Pirnat J (2020) Using graph theory to analyse and assess changes in Mediterranean woodland connectivity. Landsc Ecol 35(6):1291–1308

    Article  Google Scholar 

  • Maia KP, Marquitti FM, Vaughan IP, Memmott J, Raimundo RL (2021) Interaction generalisation and demographic feedbacks drive the resilience of plant–insect networks to extinctions. J Anim Ecol. https://doi.org/10.1111/1365-2656.13547

    Article  Google Scholar 

  • Mair M, Zischg J, Rauch W, Sitzenfrei R (2017) Where to find water pipes and sewers?—on the correlation of infrastructure networks in the urban environment. Water 9(2):146

    Article  Google Scholar 

  • Mamet SD, Redlick E, Brabant M, Lamb EG, Helgason BL, Stanley K, Siciliano SD (2019) Structural equation modeling of a winnowed soil microbiome identifies how invasive plants re-structure microbial networks. ISME J 13(8):1988–1996

    Article  Google Scholar 

  • Mao Y, Liu Y, Wang H, Tang W, Kong X (2017) A spatial-territorial reorganization model of rural settlements based on graph theory and genetic optimization. Sustainability 9(8):1370

    Article  Google Scholar 

  • Martensen AC, Saura S, Fortin MJ (2017) Spatio-temporal connectivity: assessing the amount of reachable habitat in dynamic landscapes. Methods Ecol Evol 8(10):1253–1264

    Article  Google Scholar 

  • Masselink RJ, Heckmann T, Temme AJ, Anders NS, Gooren HP, Keesstra SD (2017) A network theory approach for a better understanding of overland flow connectivity. Hydrol Process 31(1):207–220

    Article  Google Scholar 

  • Matos C, Petrovan SO, Wheeler PM, Ward AI (2019) Landscape connectivity and spatial prioritization in an urbanising world: a network analysis approach for a threatened amphibian. Biol Cons 237:238–247

    Article  Google Scholar 

  • McCann KS, Cazelles K, MacDougall AS, Fussmann GF, Bieg C, Cristescu M et al (2021) Landscape modification and nutrient-driven instability at a distance. Ecol Lett 24(3):398–414

    Article  Google Scholar 

  • Mehring M, Mehlhaus N, Ott E, Hummel D (2019) A systematic review of biodiversity and demographic change: a misinterpreted relationship? Ambio 49:1297–1312

    Article  Google Scholar 

  • Mestre F, Ascensão F, Barbosa A (2019) gDefrag: a graph-based tool to help defragmenting landscapes divided by linear infrastructures. Ecol Model 392:1–5

    Article  Google Scholar 

  • Meurant M, Gonzalez A, Doxa A, Albert CH (2018) Selecting surrogate species for connectivity conservation. Biol Conserv 227:326–334

    Article  Google Scholar 

  • Miao Z, Pan L, Wang Q, Chen P, Yan C, Liu L (2019) Research on urban ecological network under the threat of road networks—a case study of Wuhan. ISPRS Int J Geo Inf 8(8):342

    Article  Google Scholar 

  • Mikolajczak A, Maréchal D, Sanz T, Isenmann M, Thierion V, Luque S (2015) Modelling spatial distributions of alpine vegetation: a graph theory approach to delineate ecologically-consistent species assemblages. Ecol Inform 30:196–202

    Article  Google Scholar 

  • Mikoláš M, Tejkal M, Kuemmerle T, Griffiths P, Svoboda M, Hlásny T et al (2017) Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landsc Ecol 32(1):163–179

    Article  Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22(2):297–307

    Article  Google Scholar 

  • Modica G, Pratico S, Laudari L, Ledda A, Di Fazio S, De Montis A (2021) Implementation of multispecies ecological networks at the regional scale: analysis and multi-temporal assessment. J Environ Manag 289:18. https://doi.org/10.1016/j.jenvman.2021.112494

    Article  Google Scholar 

  • Mollashahi H, Szymura M, Szymura TH (2020) Connectivity assessment and prioritization of urban grasslands as a helpful tool for effective management of urban ecosystem services. PLoS ONE 15(12):e0244452

    Article  CAS  Google Scholar 

  • Mu B, Liu C, Tian G, Xu Y, Zhang Y, Mayer AL et al (2020) Conceptual planning of urban–rural green space from a multidimensional perspective: a case study of Zhengzhou, China. Sustainability 12(7):2863

    Article  Google Scholar 

  • Mu B, Tian G, Xin G, Hu M, Yang P, Wang Y et al (2021) Measuring dynamic changes in the spatial pattern and connectivity of surface waters based on landscape and graph metrics: a case study of Henan Province in central China. Land 10(5):471. https://doi.org/10.3390/land10050471

    Article  Google Scholar 

  • Mueller L (2019) Conceptual breakthroughs in evolutionary ecology. Academic Press, New York

    Google Scholar 

  • Naicker R, Rouget M, Mutanga O (2016) Assessing habitat fragmentation of the KwaZulu-Natal Sandstone Sourveld, a threatened ecosystem. Bothalia Afr Biodivers Conserv 46(2):1–10

    Google Scholar 

  • Neel M, Tumas HR, Marsden BW (2014) Representing connectivity: quantifying effective habitat availability based on area and connectivity for conservation status assessment and recovery. PeerJ 2:e622

    Article  Google Scholar 

  • Nie W, Shi Y, Siaw MJ, Yang F, Wu R, Wu X et al (2021) Constructing and optimizing ecological network at county and town Scale: the case of Anji County, China. Ecol Indic 132:108294

    Article  Google Scholar 

  • Nogués S, Cabarga-Varona A (2014) Modelling land use changes for landscape connectivity: the role of plantation forestry and highways. J Nat Conserv 22(6):504–515

    Article  Google Scholar 

  • Ocampo-Peñuela N, Garcia-Ulloa J, Kornecki I, Philipson CD, Ghazoul J (2020) Impacts of four decades of forest loss on vertebrate functional habitat on Borneo. Front for Glob Change 3:53

    Article  Google Scholar 

  • O’Donnell MS, Edmunds DR, Aldridge CL, Heinrichs JA, Coates PS, Prochazka BG, Hanser SE (2019) Designing multi-scale hierarchical monitoring frameworks for wildlife to support management: a sage-grouse case study. Ecosphere 10(9):e02872

    Article  Google Scholar 

  • Panzacchi M, Van Moorter B, Strand O, Saerens M, Kivimäki I, Stclair CC et al (2016) Predicting the continuum between corridors and barriers to animal movements using step selection functions and randomized shortest paths. J Anim Ecol 85(1):32–42

    Article  Google Scholar 

  • Pata PR, Yñiguez AT (2021) Spatial planning insights for philippine coral reef conservation using larval connectivity networks. Front Mar Sci. https://doi.org/10.3389/fmars.2021.719691

    Article  Google Scholar 

  • Paterson GB, Smart G, McKenzie P, Cook S (2019) Prioritising sites for pollinators in a fragmented coastal nectar habitat network in Western Europe. Landsc Ecol 34(12):2791–2805

    Article  Google Scholar 

  • Peng Y, Meng M, Huang Z, Wang R, Cui G (2021) Landscape connectivity analysis and optimization of Qianjiangyuan National Park, Zhejiang Province, China. Sustainability 13(11):5944

    Article  Google Scholar 

  • Pereira J, Jordán F (2017) Multi-node selection of patches for protecting habitat connectivity: fragmentation versus reachability. Ecol Ind 81:192–200

    Article  Google Scholar 

  • Pereira J, Saura S, Jordán F (2017) Single-node vs. multi-node centrality in landscape graph analysis: key habitat patches and their protection for 20 bird species in NE Spain. Methods Ecol Evol 8(11):1458–1467

    Article  Google Scholar 

  • Perez G, Bastian S, Chastagner A, Agoulon A, Rantier Y, Vourch G et al (2020) Relationships between landscape structure and the prevalence of two tick-borne infectious agents, Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato, in small mammal communities. Landsc Ecol 35(2):435–451

    Article  Google Scholar 

  • Perianes-Rodriguez A, Waltman L, van Eck NJ (2016) Constructing bibliometric networks: a comparison between full and fractional counting. J Informetr 10(4):1178–1195. https://doi.org/10.1016/j.joi.2016.10.006

    Article  Google Scholar 

  • Perkl RM (2016) Modeling connectivity of the whole: a graph theoretic application in conservation planning prioritization. Landsc J 35(1):79–96

    Article  Google Scholar 

  • Perkl RM, Baldwin RF, Trombulak SC, Smith GR (2016) Landscape network congruency at the ecoregion scale: can we expect corridor ‘umbrellas’? J Land Use Sci 11(4):429–449

    Article  Google Scholar 

  • Perry GL, Moloney KA, Etherington TR (2017) Using network connectivity to prioritise sites for the control of invasive species. J Appl Ecol 54(4):1238–1250

    Article  Google Scholar 

  • Peterson CH, Gischlar KL, Peterson NA (2017) Item construction using reflective, formative, or Rasch measurement models: Implications for group work. J Spec Group Work 42(1):17–32

    Article  Google Scholar 

  • Petsas P, Almpanidou V, Mazaris AD (2021) Landscape connectivity analysis: new metrics that account for patch quality, neighbors’ attributes and robust connections. Landsc Ecol 36(11):3153–3168

    Article  Google Scholar 

  • Petticrew M (2001) Systematic reviews from astronomy to zoology: myths and misconceptions. BMJ 322(7278):98–101

    Article  CAS  Google Scholar 

  • Pham DDT, Paillé P, Halilem N (2019) Systematic review on environmental innovativeness: a knowledge-based resource view. J Clean Prod 211:1088–1099

    Article  Google Scholar 

  • Pietsch M (2018) Contribution of connectivity metrics to the assessment of biodiversity—some methodological considerations to improve landscape planning. Ecol Ind 94:116–127

    Article  Google Scholar 

  • Pirnat J, Hladnik D (2016) Connectivity as a tool in the prioritization and protection of sub-urban forest patches in landscape conservation planning. Landsc Urban Plan 153:129–139

    Article  Google Scholar 

  • Poodat F, Arrowsmith C, Fraser D, Gordon A (2015) Prioritizing urban habitats for connectivity conservation: integrating centrality and ecological metrics. Environ Manag 56(3):664–674

    Article  Google Scholar 

  • Préau C, Grandjean F, Sellier Y, Gailledrat M, Bertrand R, Isselin-Nondedeu F (2020) Habitat patches for newts in the face of climate change: local scale assessment combining niche modelling and graph theory. Sci Rep 10(1):1–13

    Article  CAS  Google Scholar 

  • Prima MC, Duchesne T, Fortin A, Rivest LP, Fortin D (2018) Combining network theory and reaction–advection–diffusion modelling for predicting animal distribution in dynamic environments. Methods Ecol Evol 9(5):1221–1231

    Article  Google Scholar 

  • Prima MC, Duchesne T, Fortin A, Rivest LP, Drapeau P, St-Laurent MH, Fortin D (2019) A landscape experiment of spatial network robustness and space-use reorganization following habitat fragmentation. Funct Ecol 33(9):1663–1673

    Article  Google Scholar 

  • Qi K, Fan Z, Ng CN, Wang X, Xie Y (2017) Functional analysis of landscape connectivity at the landscape, component, and patch levels: a case study of Minqing County, Fuzhou City, China. Appl Geogr 80:64–77

    Article  Google Scholar 

  • Qi K, Fan Z, Xie Y (2021) The influences of habitat proportion and patch-level structural factors in the spatial habitat importance ranking for connectivity and implications for habitat conservation. Urban for Urban Green 64:127239

    Article  Google Scholar 

  • Rana S, Bhattacharya S, Pal J, N’Guérékata GM, Chattopadhyay J (2013) Paradox of enrichment: a fractional differential approach with memory. Physica A 392(17):3610–3621. https://doi.org/10.1016/j.physa.2013.03.061

    Article  Google Scholar 

  • Rappaport DI, Tambosi LR, Metzger JP (2015) A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation. J Appl Ecol 52(3):590–601

    Article  Google Scholar 

  • Rayfield B, Fortin M-J, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858

    Article  Google Scholar 

  • Rehnus M, Bollmann K, Schmatz DR, Hackländer K, Braunisch V (2018) Alpine glacial relict species losing out to climate change: the case of the fragmented mountain hare population (Lepus timidus) in the Alps. Glob Change Biol 24(7):3236–3253

    Article  Google Scholar 

  • Ren Y, Deng L, Zuo S, Luo Y, Shao G, Wei X et al (2014) Geographical modeling of spatial interaction between human activity and forest connectivity in an urban landscape of southeast China. Landsc Ecol 29(10):1741–1758

    Article  Google Scholar 

  • Rodríguez-Pérez J, García D, Martínez D (2014) Spatial networks of fleshy-fruited trees drive the flow of avian seed dispersal through a landscape. Funct Ecol 28(4):990–998

    Article  Google Scholar 

  • Roopnarine P (2013) Ecology and the tragedy of the commons. Sustainability 5(2):749–773

    Article  Google Scholar 

  • Roosta M, Javadpoor M, Ebadi M (2021) A study on street network resilience in urban areas by urban network analysis: comparative study of old, new and middle fabrics in shiraz. Int J Urban Sci. https://doi.org/10.1080/12265934.2021.1911676

    Article  Google Scholar 

  • Roy A, Bhattacharya S, Ramprakash M, Kumar AS (2016) Modelling critical patches of connectivity for invasive Maling bamboo (Yushania maling) in Darjeeling Himalayas using graph theoretic approach. Ecol Model 329:77–85

    Article  Google Scholar 

  • Ruiz L, Parikh N, Heintzman LJ, Collins SD, Starr SM, Wright CK et al (2014) Dynamic connectivity of temporary wetlands in the southern Great Plains. Landsc Ecol 29(3):507–516

    Article  Google Scholar 

  • Ruppert JL, Fortin M-J, Gunn EA, Martell DL (2016) Conserving woodland caribou habitat while maintaining timber yield: a graph theory approach. Can J for Res 46(7):914–923. https://doi.org/10.1139/cjfr-2015-0431

    Article  Google Scholar 

  • Sahraoui Y, Foltête J-C, Clauzel C (2017) A multi-species approach for assessing the impact of land-cover changes on landscape connectivity. Landsc Ecol 32(9):1819–1835

    Article  Google Scholar 

  • Sahraoui Y, Leski CDG, Benot M-L, Revers F, Salles D, van Halder I et al (2021) Integrating ecological networks modelling in a participatory approach for assessing impacts of planning scenarios on landscape connectivity. Landsc Urban Plan 209:104039

    Article  Google Scholar 

  • Saint-Béat B, Baird D, Asmus H, Asmus R, Bacher C, Pacella SR et al (2015) Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecol Ind 52:458–471

    Article  Google Scholar 

  • Salazar AA, Arellano EC, Muñoz-Sáez A, Miranda MD, Oliveira da Silva F, Zielonka NB et al (2021) Restoration and conservation of priority areas of Caatinga’s semi-arid forest remnants can support connectivity within an agricultural landscape. Land 10(6):550

    Article  Google Scholar 

  • Salviano IR, Gardon FR, dos Santos RF (2021) Ecological corridors and landscape planning: a model to select priority areas for connectivity maintenance. Landsc Ecol 36(11):3311–3328

    Article  Google Scholar 

  • Samsing F, Johnsen I, Treml EA, Dempster T (2019) Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int J Parasitol 49(3–4):277–286

    Article  Google Scholar 

  • Sánchez AM, Delgado P, González-Rodríguez A, González C, Rojas AFG-T, Lopez-Toledo L (2019) Spatio-temporal approach for identification of critical conservation areas: a case study with two pine species from a threatened temperate forest in Mexico. Biodivers Conserv 28(7):1863–1883

    Article  Google Scholar 

  • Santini L, Saura S, Rondinini C (2016) Connectivity of the global network of protected areas. Divers Distrib 22(2):199–211

    Article  Google Scholar 

  • Saura S, Estreguil C, Mouton C, Rodríguez-Freire M (2011) Network analysis to assess landscape connectivity trends: application to European forests (1990–2000). Ecol Ind 11(2):407–416

    Article  Google Scholar 

  • Savary P, Foltête JC, Moal H, Vuidel G, Garnier S (2021a) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21(4):1167–1185

    Article  Google Scholar 

  • Savary P, Foltête JC, Moal H, Vuidel G, Garnier S (2021b) graph4lg: a package for constructing and analysing graphs for landscape genetics in R. Methods Ecol Evol 12(3):539–547

    Article  Google Scholar 

  • Schaffer-Smith D, Swenson JJ, Boveda-Penalba AJ (2016) Rapid conservation assessment for endangered species using habitat connectivity models. Environ Conserv 43(3):221–230

    Article  Google Scholar 

  • Schivo F, Mateo-Sánchez MC, Bauni V, Quintana RD (2020) Influence of land-use/land-cover change on landscape connectivity for an endemic threatened amphibian (Argenteohyla siemersi pederseni, Anura: Hylidae). Landsc Ecol 35(6):1481–1494

    Article  Google Scholar 

  • Selim S, Demir D (2019) Detection of ecological networks and connectivity with analyzing their effects on sustainable urban development. Int J Eng Geosci 4(2):63–70

    Google Scholar 

  • Serret H, Raymond R, Foltête J-C, Clergeau P, Simon L, Machon N (2014) Potential contributions of green spaces at business sites to the ecological network in an urban agglomeration: the case of the Ile-de-France region, France. Landsc Urban Plan 131:27–35

    Article  Google Scholar 

  • Shahvi S, Mellander P-E, Jordan P, Fenton O (2021) A Fuzzy cognitive map method for integrated and participatory water governance and indicators affecting drinking water supplies. Sci Total Environ 750:142193

    Article  CAS  Google Scholar 

  • Shanu S, Idiculla J, Qureshi Q, Jhala Y, Aggarwal A, Dimri P, Bhattacharya S (2019) A graph theoretic approach for modelling tiger corridor network in Central India-Eastern Ghats landscape complex, India. Ecol Inform 50:76–85

    Article  Google Scholar 

  • Shao D, Liu K, Mossman HL, Adams MP, Wang H, Li D et al (2021) A prioritization metric and modelling framework for fragmented saltmarsh patches restoration. Ecol Indic 128:107833

    Article  Google Scholar 

  • Shen Z, Wu W, Chen M, Tian S, Wang J (2021) Linking greenspace ecological networks optimization into urban expansion planning: insights from China’s total built land control policy. Land 10(10):1046

    Article  Google Scholar 

  • Shi F, Liu S, An Y, Sun Y, Zhao S, Liu Y, Li M (2020) Spatio-temporal dynamics of landscape connectivity and ecological network construction in Long Yangxia basin at the upper Yellow river. Land 9(8):265

    Article  Google Scholar 

  • Sillero N, Biaggini M, Corti C (2018) Analysing the importance of stepping-stone islands in maintaining structural connectivity and endemicity. Biol J Lin Soc 124(1):113–125

    Article  Google Scholar 

  • Siqueira FF, de Carvalho D, Rhodes J, Archibald CL, Rezende VL, van den Berg E (2021) Small landscape elements double connectivity in highly fragmented areas of the Brazilian Atlantic forest. Front Ecol Evol 9:304

    Article  Google Scholar 

  • Sloan S, Campbell MJ, Alamgir M, Lechner AM, Engert J, Laurance WF (2019) Trans-national conservation and infrastructure development in the Heart of Borneo. PLoS ONE 14(9):e0221947

    Article  CAS  Google Scholar 

  • Song W, Kim E (2016) Landscape factors affecting the distribution of the great tit in fragmented urban forests of Seoul, South Korea. Landsc Ecol Eng 12(1):73–83

    Article  Google Scholar 

  • Stewart-Koster B, Olden JD, Johnson PT (2015) Integrating landscape connectivity and habitat suitability to guide offensive and defensive invasive species management. J Appl Ecol 52(2):366–378

    Article  Google Scholar 

  • Suttidate N, Steinmetz R, Lynam AJ, Sukmasuang R, Ngoprasert D, Chutipong W et al (2021) Habitat connectivity for endangered Indochinese tigers in Thailand. Glob Ecol Conserv 29:e01718

    Article  Google Scholar 

  • Szmytkie R (2017) Application of graph theory to the morphological analysis of settlements. Quaestiones Geographicae 36(4):65–80

    Article  Google Scholar 

  • Tambosi LR, Martensen AC, Ribeiro MC, Metzger JP (2014) A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity. Restor Ecol 22(2):169–177

    Article  Google Scholar 

  • Tarabon S, Bergès L, Dutoit T, Isselin-Nondedeu F (2019a) Environmental impact assessment of development projects improved by merging species distribution and habitat connectivity modelling. J Environ Manag 241:439–449

    Article  Google Scholar 

  • Tarabon S, Bergès L, Dutoit T, Isselin-Nondedeu F (2019b) Maximizing habitat connectivity in the mitigation hierarchy. A case study on three terrestrial mammals in an urban environment. J Environ Manag 243:340–349

    Article  Google Scholar 

  • Tarabon S, Calvet C, Delbar V, Dutoit T, Isselin-Nondedeu F (2020) Integrating a landscape connectivity approach into mitigation hierarchy planning by anticipating urban dynamics. Landsc Urban Plan 202:103871

    Article  Google Scholar 

  • Tarabon S, Dutoit T, Isselin-Nondedeu F (2021) Pooling biodiversity offsets to improve habitat connectivity and species conservation. J Environ Manag 277:111425

    Article  Google Scholar 

  • Thornhill I, Batty L, Hewitt M, Friberg NR, Ledger ME (2018) The application of graph theory and percolation analysis for assessing change in the spatial configuration of pond networks. Urban Ecosyst 21(2):213–225

    Google Scholar 

  • Tiang DCF, Morris A, Bell M, Gibbins CN, Azhar B, Lechner AM (2021) Ecological connectivity in fragmented agricultural landscapes and the importance of scattered trees and small patches. Ecol Process 10(1):1–16

    Article  Google Scholar 

  • Tielens EK, Neel MN, Leopold DR, Giardina CP, Gruner DS (2019) Multiscale analysis of canopy arthropod diversity in a volcanically fragmented landscape. Ecosphere 10(4):e02653

    Article  Google Scholar 

  • Torres RT, Carvalho J, Serrano E, Helmer W, Acevedo P, Fonseca C (2017) Favourableness and connectivity of a Western Iberian landscape for the reintroduction of the iconic Iberian ibex Capra pyrenaica. Oryx 51(4):709–717

    Article  Google Scholar 

  • Tulbure MG, Kininmonth S, Broich M (2014) Spatiotemporal dynamics of surface water networks across a global biodiversity hotspot—implications for conservation. Environ Res Lett 9(11):114012

    Article  Google Scholar 

  • Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12(3):260–273

    Article  Google Scholar 

  • Van Looy K, Piffady J, Cavillon C, Tormos T, Landry P, Souchon Y (2014) Integrated modelling of functional and structural connectivity of river corridors for European otter recovery. Ecol Model 273:228–235

    Article  Google Scholar 

  • Vesterinen M, Perälä T, Kuparinen A (2021) The effect of fish life-history structures on the topologies of aquatic food webs. Food Webs 29:e00213

    Article  Google Scholar 

  • Volk XK, Gattringer JP, Otte A, Harvolk-Schöning S (2018) Connectivity analysis as a tool for assessing restoration success. Landsc Ecol 33(3):371–387

    Article  Google Scholar 

  • Walker NJ, Schaffer-Smith D, Swenson JJ, Urban DL (2019) Improved connectivity analysis using multiple low-cost paths to evaluate habitat for the endangered San Martin titi monkey (Plecturocebus oenanthe) in north-central Peru. Landscape Ecol 34(8):1859–1875

    Article  Google Scholar 

  • Waltman L, Van Eck NJ, Noyons EC (2010) A unified approach to mapping and clustering of bibliometric networks. J Informetr 4(4):629–635

    Article  Google Scholar 

  • Wang C, Liu H (2020) Developing large-scale international ecological networks based on least-cost path analysis—a case study of Altai mountains. Open Geosci 12(1):840–850

    Article  CAS  Google Scholar 

  • Wang S, Wu M, Hu M, Fan C, Wang T, Xia B (2021a) Promoting landscape connectivity of highly urbanized area: an ecological network approach. Ecol Indic 125:107487

    Article  Google Scholar 

  • Wang Z, Yang Z, Shi H, Han L (2021b) Effect of forest connectivity on the dispersal of species: a case study in the Bogda World Natural Heritage Site, Xinjiang, China. Ecol Indic 125:107576

    Article  Google Scholar 

  • Wanghe K, Guo X, Luan X, Li K (2019) Assessment of urban green space based on bio-energy landscape connectivity: a case study on Tongzhou District in Beijing, China. Sustainability 11(18):4943

    Article  Google Scholar 

  • Wolstenholme P, Pedley SM (2021) Permeability of commercial landscapes: integrating plantation forest trackways into ecological networks. Landsc Ecol 36(5):1459–1474

    Article  Google Scholar 

  • Wu Q, Lane CR (2017) Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery. Hydrol Earth Syst Sci 21(7):3579

    Article  Google Scholar 

  • Xiao R, Liu Y, Fei X, Yu W, Zhang Z, Meng Q (2019) Ecosystem health assessment: a comprehensive and detailed analysis of the case study in coastal metropolitan region, eastern China. Ecol Ind 98:363–376

    Article  Google Scholar 

  • Xiu N, Ignatieva M, van den Bosch CK, Chai Y, Wang F, Cui T, Yang F (2017) A socio-ecological perspective of urban green networks: the Stockholm case. Urban Ecosyst 20(4):729–742

    Article  Google Scholar 

  • Xiu N, Ignatieva M, van den Bosch CK, Zhang S (2020) Applying a socio-ecological green network framework to Xi’an City, China. Landsc Ecol Eng 16(2):135–150

    Article  Google Scholar 

  • Xu W, Fayrer-Hosken R, Madden M, Simms C, Mu L, Presotto A (2017) Coupling African elephant movement and habitat modeling for landscape availability-suitability-connectivity assessment in Kruger National Park. Pachyderm 58:97–106

    Google Scholar 

  • Xun B, Yu D, Liu Y (2014) Habitat connectivity analysis for conservation implications in an urban area. Acta Ecol Sin 34(1):44–52

    Article  Google Scholar 

  • Xun B, Yu D, Wang X (2017) Prioritizing habitat conservation outside protected areas in rapidly urbanizing landscapes: a patch network approach. Landsc Urban Plan 157:532–541

    Article  Google Scholar 

  • Yang J, Zeng C, Cheng Y (2020) Spatial influence of ecological networks on land use intensity. Sci Total Environ 717:137151

    Article  CAS  Google Scholar 

  • Ye H, Yang Z, Xu X (2020) Ecological corridors analysis based on MSPA and MCR model—a case study of the Tomur World Natural Heritage Region. Sustainability 12(3):959

    Article  Google Scholar 

  • Yu D, Liu Y, Xun B, Shao H (2015) Measuring landscape connectivity in a urban area for biological conservation. Clean: Soil, Air, Water 43(4):605–613

    CAS  Google Scholar 

  • Yu Z, Zhang J, Yang G (2021a) How to build a heat network to alleviate surface heat island effect? Sustain Cities Soc 74:103135

    Article  Google Scholar 

  • Yu Z, Zhang J, Yang G, Schlaberg J (2021b) Reverse thinking: a new method from the graph perspective for evaluating and mitigating regional surface heat islands. Remote Sens 13(6):1127

    Article  Google Scholar 

  • Zhang Z, Meerow S, Newell JP, Lindquist M (2019) Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban for Urban Green 38:305–317

    Article  Google Scholar 

  • Zhang L, Hou G, Li F (2020a) Dynamics of landscape pattern and connectivity of wetlands in western Jilin Province, China. Environ Dev Sustain 22(3):2517–2528. https://doi.org/10.1007/s10668-018-00306-z

    Article  Google Scholar 

  • Zhang J, Wang X, Xie Y (2021a) Implication of buffer zones delineation considering the landscape connectivity and influencing patch structural factors in nature reserves. Sustainability 13(19):10833

    Article  Google Scholar 

  • Zhang R, Zhang L, Zhong Q, Zhang Q, Ji Y, Song P, Wang Q (2021b) An optimized evaluation method of an urban ecological network: the case of the Minhang District of Shanghai. Urban for Urban Green 62:127158

    Article  Google Scholar 

  • Zhao S-M, Ma Y-F, Wang J-L, You X-Y (2019) Landscape pattern analysis and ecological network planning of Tianjin City. Urban for Urban Green 46:126479

    Article  Google Scholar 

  • Zhao H, Liu D, Li F, Liu X, Niu J, He J, Liu Y (2021) Incorporating spatio-temporal connectivity for prioritized conservation of individual habitat patches in a dynamic landscape. Ecol Indic 124:107414

    Article  Google Scholar 

  • Zhe-tao X, Wan-ying Z, Li-jun H (2021) The evolution of spatial and temporal patterns of Zhengzhou ecological network based on MSPA. Arab J Geosci 14(12):1–10

    Article  Google Scholar 

  • Zhou Q, van den Bosch CCK, Chen J, Zhang W, Dong J (2021) Identification of ecological networks and nodes in Fujian province based on green and blue corridors. Sci Rep 11(1):1–18

    Article  CAS  Google Scholar 

  • Ziółkowska E, Ostapowicz K, Radeloff VC, Kuemmerle T (2014) Effects of different matrix representations and connectivity measures on habitat network assessments. Landsc Ecol 29(9):1551–1570

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Faculty of Environment (University of Tehran) for their assistance with the collection of required papers, and data for this research work.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Darabi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, R., Darabi, H. The Review of Ecological Network Indicators in Graph Theory Context: 2014–2021. Int J Environ Res 16, 24 (2022). https://doi.org/10.1007/s41742-022-00404-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41742-022-00404-x

Keywords

Navigation