Skip to main content
Log in

Efficacy of Alternanthera bettzickiana to Remediate Copper and Cobalt Contaminated Soil Physiological and Biochemical Alterations

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Increasing world population triggers intensive agricultural practices responsible for higher heavy metal contamination of soil and water. The present study was conducted to evaluate the morpho-physiological and biochemical response along with phytoextraction potential of Alternanthera bettzickiana for cobalt (Co) and copper (Cu) contaminated soil. Healthy and uniform plants of A. bettzickiana were collected and placed in pots each filled with 5 kg of sandy loam soil. Plants were treated with different concentrations of Cu and Co (2.5, 5, 7.5, and 10 mM). After 8 weeks of treatments, plant agronomic traits such as plant growth, biomass, chlorophyll content, and activities of antioxidant enzymes were measured and results revealed no visual signs of toxicity whereas all characteristics were enhanced as compared to control plants except 10 mM where it significantly decreased the plant’s morpho-physiological and biochemical characteristics. Further, Cu and Co concentration and accumulation in all parts of plants significantly increased with increasing concentration of applied heavy metal. The plants significantly accumulate 2.1 and 2.0 times more Cu in shoots and 1.5 and 1.2 times more Co in roots as compared to controls. The results concluded that A. bettzickiana is a potential hyperaccumulator and halophyte of Co and Cu therefore it can be a potential candidate for the remediation of Cu and Co contaminated sites.

Graphic Abstract

Article Highlights

  • Alternanthera bettzickiana showed greater tolerance towards copper and cobalt.

  • Higher metal doses altered biochemical functions and decreased agronomic traits.

  • Antioxidant defense system boosted up to scavenge reactive oxygen species production.

  • Alternanthera bettzickiana proved as good hyper-accumulator of cobalt and copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abollino O, Aceto M, Malandrino M, Mentasti E, Sarzanini C, Petrella F (2002) Heavy metal in agricultural soils from Piedmont, Italy. Distribution, speciation and chemometric data treatment. Chemosphere 49(6):545–557

    Article  CAS  Google Scholar 

  • Abollino O, Malandrino M, Berto S, La Gioia C, Maruccia V, Conca E, Giacomino A (2019) Stripping voltammetry for field determination of traces of copper in soil extracts and natural waters. Microchem J 149:104015

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Arsenic. Trace elements in terrestrial environment. Springer, New York, pp 219–261

    Book  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Abbasi GH (2015) Citric acid enhances the phyto-extraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22(15):11679–11689

    Article  CAS  Google Scholar 

  • Ahmad R, Ali S, Rizwan M, Dawood M, Farid M, Hussain A, Wijaya L, Alyemeni MN, Ahmad P (2019) Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol Planta 168:289

    Google Scholar 

  • Ali A, Iqbal N, Ali F, Afzal B (2012) Alternanthera bettzickiana (Regel) G. Nicholson, a potential halophytic ornamental plant: growth and physiological adaptations. Flora Morphol Distrib Funct Ecol Plants 207(4):318–321

    Article  Google Scholar 

  • Ali S, Chaudhary A, Rizwan M, Anwar HT, Adrees M, Farid M, Irshad MK, Hayat T, Anjum SA (2015) Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ Sci Pollut Res 22(14):10669–10678

    Article  CAS  Google Scholar 

  • Anjum S, Arora A, Alam MS, Gupta B (2016) Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int J Pharm 508(1–2):92–101

    Article  CAS  Google Scholar 

  • Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, Irshad MK (2016) Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch Agron Soil Sci 62(4):533–546

    Article  CAS  Google Scholar 

  • Baisak R, Rana D, Acharya PB, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35(3):489–495

    CAS  Google Scholar 

  • Bang J, Kamala-Kannan S, Lee KJ, Cho M, Kim CH, Kim YJ, Oh BT (2015) Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1. Int J Phytoremediat 17(6):515–520

    Article  CAS  Google Scholar 

  • Beyersmann D (2002) Effects of carcinogenic metals on gene expression. Toxicol Lett 127(1–3):63–68

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bukhari SA, Zheng W, Xie L, Zhang G, Shang S, Wu F (2016) Cr-induced changes in leaf protein profile, ultrastructure and photosynthetic traits in the two contrasting tobacco genotypes. Plant Growth Regul 79(2):147–156

    Article  CAS  Google Scholar 

  • Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 5(1):1–4

    Article  CAS  Google Scholar 

  • Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+ permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270

    Article  CAS  Google Scholar 

  • Dezfoulian AH, Aliarabi H (2017) A comparison between different concentrations and sources of cobalt in goat kid nutrition. Animal 11(4):600–607

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1–9

    Article  CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Faird M, Shakoor MB, Aslam A, Bharwana SA, Tauqeer HM (2013) Comparative assessment of different heavy metals in urban soil and vegetables irrigated with sewage/industrial waste water. Ecoterra 35:37–53

    Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Ishaque W, Shakoor MB, Niazi NK, Bibi I, Dawood M, Gill RA, Abbas F (2015) Exogenous application of ethylenediamine tetra acetic acid enhanced phytoremediation of cadmium by Brassica napus L. Int J Environ Sci Technol 12:3981–3992

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M (2016) Citric acid assisted phytoremediation of copper by Brassica napus L. Arsenic research and global sustainability. In: Proceedings of the sixth international congress on arsenic in the environment (As 2016), June 19–23, 2016, Stockholm, Sweden

  • Farid M, Ali S, Akram NA, Rizwan M, Abbas F, Bukhari SAH, Saeed R (2017a) Phyto-management of Cr-contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress. Environ Sci Pollut Res 24(20):16845–16859

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L (2017b) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Saeed R, Tauqeer HM, Sallah-Ud-Din R, Azam A, Raza N (2017c) Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environ Sci Pollut Res 24(25):2150–2164

    Google Scholar 

  • Farid M, Ali S, Zubair M, Saeed R, Rizwan M, Sallah-Ud-Din R, Azam A, Ashraf R, Ashraf W (2018) Glutamic acid assisted phyto-management of silver contaminated soils through sunflower; physiological and biochemical response. Environ Sci Pollut Res 25(25):25390–25400

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Saeed R, Rizwan M, Bukhari SAH, Abbasi GH, Hussain A, Ali B, Zamir MSI, Ahmad I (2019) Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (Helianthus annuus L.) grown on chromium contaminated soil. Int J Phytoremediation 21(8):760–767

    Article  CAS  Google Scholar 

  • Fazeli G, Karbassi A, Khoramnejadian S, Nasrabadi T (2019) Evaluation of urban soil pollution: a combined approach of toxic metals and polycyclic aromatic hydrocarbons (PAHs). Int J Environ Res 13(5):801–811

    Article  CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137(3):1082–1091

    Article  CAS  Google Scholar 

  • Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162(10):1133–1140

    Article  CAS  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Adbelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79

    Article  CAS  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125(1):189–198

    Article  CAS  Google Scholar 

  • Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160(6):1085–1093

    Article  Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2016) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62(5):648–662

    Article  CAS  Google Scholar 

  • Jana S, Choudhari MA (1982) Senescence in submerged aquatic angiosperms: effect of heavy metals. New Phytol 90:477–484

    Article  CAS  Google Scholar 

  • Jordan FL, Robin-Abbott M, Maier RM, Glenn EP (2002) A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environ Toxicol Chem 21(12):2698–2704

    Article  CAS  Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytoremediat 10(1):31–46

    Article  CAS  Google Scholar 

  • Kamran MA, Mufti R, Mubariz N, Syed JH, Bano A, Javed MT, Chaudhary HJ (2014) The potential of the flora from different regions of Pakistan in phytoremediation: a review. Environ Sci Pollut Res 21(2):801–812

    Article  Google Scholar 

  • Kanwal U, Ibrahim M, Ali S, Adrees M, Mahmood A, Rizwan M, Abbas F, Dawood M, Muhammad TAD (2019) Potential of Alternanthera bettzickiana (Regel) G. Nicholson for remediation of cadmium-contaminated soil using citric acid. Pak J Agric Sci 56(3):89

    Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Corréal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65(1):142–152

    Article  CAS  Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp 70 expression in Enteromorpha intestinalis (chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291

    Article  CAS  Google Scholar 

  • Leyssens L, Vinck B, Van Der Straeten C, Wuyts F, Maes L (2017) Cobalt toxicity in humans—a review of the potential sources and systemic health effects. Toxicology 387:43–56

    Article  CAS  Google Scholar 

  • Li CC, Dang F, Li M, Zhu M, Zhong H, Hintelmann H, Zhou DM (2017) Effects of exposure pathways on the accumulation and phytotoxicity of silver nanoparticles in soybean and rice. Nanotoxicology 11:699–709

    Article  CAS  Google Scholar 

  • Lutts S, Lefevre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33(4):1271–1279

    Article  CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106(3):326–332

    Article  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    CAS  Google Scholar 

  • Metzner AB (1965) Heat transfer in non-Newtonian fluids. Adv Heat Transf 2:357–397

    Article  CAS  Google Scholar 

  • Modaihsh A, Al-Swailem M, Mahjoub M (2004) Heavy metal contents of commercial inorganic fertilizer used in the Kingdom of Saudi Arabia. Agric Mar Sci 9:21–25

    Google Scholar 

  • Najeeb U, Xua L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009) Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. J Hazard Mater 170:1156–1163

    Article  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol Distrib Funct Ecol Plant 204(4):316–324

    Google Scholar 

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47

    Article  CAS  Google Scholar 

  • Raghunathan VK, Devey M, Hawkins S, Hails L, Davis SA, Mann S, Chang IT, Ingham E, Malhas A, Vaux DJ, Lane JD (2013) Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity. Biomaterials 34(14):3559–3570

    Article  CAS  Google Scholar 

  • Raziuddin F, Hassan G, Akmal M, Shah S, Mohammad FM, Shafi J, Zhou W (2011) Effect of cadmium and salinity on growth and photosynthesis parameters of brassica species. Pak J Bot 43:333–340

    CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    Article  CAS  Google Scholar 

  • Sallah-Ud-Din R, Farid M, Saeed R, Ali S, Rizwan M, Tauqeer HM, Bukhari SAH (2017) Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ Sci Pollut Res 24(21):17669–17678

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49(1):643–668

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58

    Article  CAS  Google Scholar 

  • Shevyakova NI, Netronina IA, Aronova E, Kuznetso V (2003) Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russ J Plant Physiol 50(5):678–685

    Article  CAS  Google Scholar 

  • Shtangeeva I (2010) Uptake of uranium and thorium by native and cultivated plants. J Environ Radioact 101(6):458–463

    Article  CAS  Google Scholar 

  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8(1):1–17

    Article  CAS  Google Scholar 

  • Vasarevičius S, Danila V, Paliulis D (2019) Application of stabilized nano zero valent iron particles for immobilization of available Cd2+, Cu2+, Ni2+, and Pb2+ ions in soil. Int J Environ Res 13(3):465–474

    Article  CAS  Google Scholar 

  • Wang C, Wu B, Jiang K, Zhou J (2018) Effects of different types of heavy metal pollution on functional traits of invasive redroot pigweed and native red amaranth. Int J Environ Res 12(4):419–427

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Netw Ecol 2011:20

    Google Scholar 

  • Younis A, Riaz A, Ikram S, Nawaz T, Hameed M, Fatima S, Ahmad F (2013) Salinity-induced structural and functional changes in 3 cultivars of Alternanthera bettzickiana (Regel) G. Nicholson. Turk J Agric For 37(6):674–687

    Article  CAS  Google Scholar 

  • Zhang H, Xia Y, Wang G, Shen Z (2008) Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper–zinc superoxide dismutase in roots of Elsholtzia haichowensis. Planta 227(2):465–475

    Article  CAS  Google Scholar 

  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

    Article  CAS  Google Scholar 

  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2013) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater 260:1100–1107

    Article  CAS  Google Scholar 

  • Zhao Z, Xi M, Jiang G, Liu X, Bai Z, Huang Y (2010) Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays, L.). J Hazard Mater 181(1):455–459

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to say thanks to University of Gujrat, Gujrat, Pakistan and Higher Education Commission (HEC), Pakistan for financial and technical support under NRPU Project No. 8996/Punjab/NRPU/HEC/R&D/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, A., Farid, M., Zubair, M. et al. Efficacy of Alternanthera bettzickiana to Remediate Copper and Cobalt Contaminated Soil Physiological and Biochemical Alterations. Int J Environ Res 14, 243–255 (2020). https://doi.org/10.1007/s41742-020-00251-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-020-00251-8

Keywords

Navigation