Skip to main content
Log in

Environmental, Technical, and Economic Evaluation of a New Treatment for Wastewater from Slaughterhouses

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

The wastewater treatment has a fundamental role for all the industrial processes, being a crucial part in the water cycle. The meat industry around the world has severe problems associated with the huge freshwater requirements that increase with the population growth. However, nowadays, the most used slaughterhouse wastewater treatment (SWWT) system has negative environment impacts. Hence, the inclusion of the life cycle assessment method, as decision technique in the design and configuration of the treatment train for these industries, results in an attractive innovation. Particularly for the SWWT, the aerobic process is the most used approach; however, its high-energy requirements increase significantly the associated total cost. On the other hand, the upflow anaerobic sludge blanket process has been reported as an attractive treatment, but this needs a secondary treatment for achieving the environmental regulations for some pollutants. Therefore, this paper presents a techno-economic–environmental–social evaluation as a sustainable alternative in wastewater treatment train configuration based on the obtained results of the Trail and Refrigerator of the city of Morelia in Mexico. The results show that with the new configuration, the energetic requirement is reduced by 76%; thus, the operational cost is minimized in the same way, while the environmental impact is reduced by 30% with the integration of anaerobic and aerobic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

SWWT:

Slaughterhouse wastewater treatment

LCA:

Life cycle assessment

UASB:

Upflow anaerobic sludge blanket

WWS:

Slaughterhouse wastewater

MPN:

Most probable number

BOD:

Biochemical oxygen demand

COD:

Chemical oxygen demand

TN:

Total nitrogen

TP:

Total phosphorous

FOG:

Fats, oils, and greases

TSS:

Total suspended solids

TDS:

Total dissolved solids

EIA:

Environmental impact analysis

EIAP:

Aerobic process environmental impact analysis

EIANP:

Anaerobic process environmental impact analysis

EIA-WW:

Untreatment wastewater discharge environmental impact analysis

References

  • Ahmadian M, Yousefi N, Van-Ginkel SW, Zare MR, Rahimi S, Fatehizadeh A (2012) Kinectic study of slaughterhouse wastewater treatment by electrocoagulation using Fe electrodes. Water Sci Technol 66(4):754–760. doi:10.2166/wst.2012.232

    Article  CAS  Google Scholar 

  • Ahmed R, Mohd S, Johan S, Aznah A, Salmiati Sivarama L (2017) Performance of integrated anaerobic/aerobic sequencing batch reactor treating poultry slaughterhouse wastewater. Chem Eng J 3013:967–974. doi:10.1016/j.cej.2016.10.144

    Google Scholar 

  • Arredondo-Ramírez K, Rubio-Castro E, Nápoles-Rivera F, Ponce-Ortega JM, Serna-González M, El-Halwagi MM (2015) Optimal design of agricultural water systems with multiperiod collection, storage, and distribution. Agric Water Manag 152(1):161–172. doi:10.1016/j.agwat.2015.01.007

    Article  Google Scholar 

  • Bare JC (2011) The tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Clean Technol Environ Policy 13(5):687–696. doi:10.1162/108819802766269539 (Springer, New York)

    Article  CAS  Google Scholar 

  • Bustillo-Lecompte C, Mehrvar M (2015) Slaughterhouse wastewater characteristics, treatment, and management in meat processing industry: a review on trends and advances. J Environ Manag 161(1):287–302. doi:10.1016/j.jenvman.2015.07.008

    Article  CAS  Google Scholar 

  • Bustillo-Lecompte C, Mehrvar M (2016) Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: modeling, optimization and cost-effectiveness analysis. J Environ Manag 182:651–666. doi:10.1016/j.jenvman.2016.07.044

    Article  CAS  Google Scholar 

  • Cao W, Mehrvar M (2011) Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chem Eng Res Des 89:1136–1143. doi:10.1016/j.cherd.2010.12.001

    Article  CAS  Google Scholar 

  • Davarnejad R, Samaneh N (2017) Slaughterhouse wastewater treatment using an advanced oxidation process: optimization study. Environ Pollut 223:1–10. doi:10.1016/j.envpol.2016.11.008

    Article  CAS  Google Scholar 

  • Del Nery V, Damianovic M, Moura R, Pozzi E, Pires E, Foresti E (2016) Poultry slaughterhouse wastewater treatment plant for high effluent. Water Sci Technol 73(2):309–316. doi:10.1016/j.cej.2016.10.144

    Article  Google Scholar 

  • Do A, Bach D, Do U, Prieto A, Huong H (2016) Performance of airlift MBR for on-site treatment slaughterhouse wastewater in urban areas of Vietnam. Water Sci Technol 74(9):2245–2251. doi:10.2166/wst.2016.418

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2016) Water withdrawal by sector, around 2010. Available on DIALOG. http://www.fao.org/nr/water/aquastat/tables/WorldData-Withdrawal_eng.pdf

  • García-Montoya M, Nápoles-Rivera F, Ponce-Ortega JM, Serna-González M, El-Halwagi MM (2014) Optimal design of reusing water systems in a housing complex. Clean Technol Environ Policy 17(2):343–357. doi:10.1007/s10098-014-0784-x

    Article  Google Scholar 

  • García-Montoya M, Sengupta D, Nápoles-Rivera F, Ponce-Ortega JM, El-Halwagi MM (2016) Environmental and economic analysis for the optimal reuse of water in a residential complex. J Clean Prod 130(1):82–91. doi:10.1016/j.jclepro.2015.06.109

    Article  Google Scholar 

  • Gu Y, Dong Y, Wang H, Keller A, Xu J, Chiramba T, Li F (2016) Quantification of the water, energy and carbon footprint of wastewater treatment plants in China considering a water-energy nexus perspective. Ecol Ind 60(1):40–409. doi:10.1016/j.ecolind.2015.07.012

    Google Scholar 

  • Harris P, McCabe B (2015) Review of pre-treatments used in anaerobic digestion and their potential application in high-fat cattle slaughterhouse wastewater. Appl Energy 155:560–575. doi:10.1016/j.apenergy.2015.06.026

    Article  CAS  Google Scholar 

  • ISO 14040 (2006) Environmental management life cycle assessment-principles and framework. Geneva, Switzerland. Available on DIALOG. http://www.iso.org/iso/catalogue_detail?csnumber=37456

  • Jensen P, Sullivan T, Carney C, Batstone D (2014) Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion. Appl Energy 136:23–31. doi:10.1016/j.apenergy.2014.09.009

    Article  Google Scholar 

  • Johns M (1995) Developments in wastewater treatment in the meat processing industry: a review. Biores Technol 54:203–216. doi:10.1016/0960-8524(95)00140-9

    Article  CAS  Google Scholar 

  • Li J, Healy M, Zhan X, Rodgers M (2008) Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor. Biores Technol 99:7644–7650. doi:10.1016/j.biortech.2008.02.001

    Article  CAS  Google Scholar 

  • Liu Y, Kang X, Li X, Yuan Y (2015) Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment. Biores Technol 190(1):487–491. doi:10.1016/j.biortech.2015.03.008

    Article  CAS  Google Scholar 

  • Mitra S, Gupta S (2014) Pilot-scale treatment of a trichloethylene rich synthetic wastewater in anaerobic hybrid reactor, with morphological study of the sludge granules. Clean Technol Environ Policy 16(5):947–956. doi:10.1007/s10098-013-0695-2

    Article  CAS  Google Scholar 

  • Morera S, Ll Corominas, Poch M, Aldaya MM, Comas J (2016) Water footprint assessment in wastewater treatment plants. J Clean Prod 112(1):4741–4748. doi:10.1016/j.jclepro.2015.05.102

    Article  CAS  Google Scholar 

  • Rodríguez J, Rodríguez I, Pedraza E, Balagurusamy N, Sosa G, Garza Y (2002) Kinetics of anaerobic treatment of slaughterhouse wastewater in batch and upflow anaerobic sludge blanket reactor. Bioresour Technol 85(1):235–241. doi:10.1016/S0960-8524(02)00141-4

    Article  Google Scholar 

  • Rodríguez-Martínez J, Rodríguez-Garza I, Pedraza-Flores E, Balagurusamy N, Sosa-Santillan G, Garza Y (2002) Kinetics of anaerobic treatment of slaughterhouse wastewater in batch and upflow anaerobic sludge blanket reactor. Bioresour Technol 85:235–241. doi:10.1016/S0960-8524(02)00141-4

    Article  Google Scholar 

  • Vidal J, Huiliñir C, Salazar R (2016) Removal of organic matter contained in slaughterhouse wastewater using a combination of anaerobic digestion and solar photoelectron-Fenton processes. Electrochim Acta 210:163–170. doi:10.1016/j.electacta.2016.05.064

    Article  CAS  Google Scholar 

  • Wu P, Mittal G (2011) Characterization of provincially inspected slaughterhouses wastewater in Ontario Canada. Biosyst Eng 53(1):6.9–6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Iván Martínez-Guido.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palomares-Rodríguez, C., Martínez-Guido, S.I., Apolinar-Cortés, J. et al. Environmental, Technical, and Economic Evaluation of a New Treatment for Wastewater from Slaughterhouses. Int J Environ Res 11, 535–545 (2017). https://doi.org/10.1007/s41742-017-0047-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-017-0047-x

Keywords

Navigation