Aghamiri RR, Schwartzman DW (2002) Weathering rates of bedrock by lichens: a mini watershed study. Chem Geol 188:249–259. doi:10.1016/S0009-2541(02)00105-5
CAS
Article
Google Scholar
Alam MA (2014) Growth chamber experiments on lichens: temperature and humidity regimes rapidly shape growth rates and carbohydrate contents. Norwegian University of Life Sciences, Oslo
Google Scholar
Aptroot A, James PW (2002) Monitoring Lichens on Monuments. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Springer, Dordrecht, pp 239–253. doi:10.1007/978-94-010-0423-7_16
Ariño X, Saiz-Jimenez C (1996) Colonization and deterioration processes in Roman mortars by cyanobacteria, algae and lichens. Aerobiologia 12:9–18. doi:10.1007/BF02248118
Article
Google Scholar
Armstrong RA (2005) Radial growth of Rhizocarpon section Rhizocarpon lichen thalli over six years at Snoqualmie Pass in the Cascade Range, Washington State. Arct Antarct Alp Res 37:411–415. doi:10.1657/1523-0430(2005)037[0411:RGORSR]2.0.CO;2
Armstrong RA (2014) Within-site variation in lichen growth rates and its implications for direct lichenometry. Geogr Ann Ser A Phys Geogr 96:217–226. doi:10.1111/geoa.12043
Article
Google Scholar
Armstrong RA (2015) The influence of environmental factors on the growth of lichens in the field. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology: modern methods and approaches in biomonitoring and bioprospection, vol 1. Springer, New Delhi, pp 1–18. doi:10.1007/978-81-322-2181-4_1
Ascaso C, Wierzchos J (1994) Structural aspects of the lichen-rock interface using back-scattered electron imaging. Bot Acta 107:251–256. doi:10.1111/j.1438-8677.1994.tb00793.x
Article
Google Scholar
Ascaso C, Wierzchos J, Souza-Egipsy V, delos Riosa A, Delgado Rodrigues J (2002) In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock. Int Biodeterior Biodegr 49:1–12. doi:10.1016/S0964-8305(01)00097-X
Article
Google Scholar
Bungartz F, Garvie LA, Nash TI (2004) Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. The Lichenologist 36:55–73. doi:10.1017/S0024282904013854
Article
Google Scholar
Cámara B, De los Ríos A, Urizal M, Álvarez de Buergo M, Varas M, Fort R, Ascaso C (2011) Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments. Microb Ecol 62:299–313. doi:10.1007/s00248-011-9815-x
Article
Google Scholar
Cappitelli F, Villa F, Polo A (2014) Culture-Independent Methods to Study Subaerial Biofilm Growing on Biodeteriorated Surfaces of Stone Cultural Heritage and Frescoes. In: Donelli G (ed) Microbial biofilms: methods and protocols. Springer, New York, pp 341–366. doi:10.1007/978-1-4939-0467-9_24
Casanova Municchia A, Percario Z, Caneva G (2014) Detection of endolithic spatial distribution in marble stone. J Microsc 256:37–45. doi:10.1111/jmi.12155
CAS
Article
Google Scholar
Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. CATENA 39:121–146. doi:10.1016/S0341-8162(99)00085-5
CAS
Article
Google Scholar
Clair LS, Seaward MR (2004) Biodeterioration of stone surfaces: lichens and biofilms as weathering agents of rocks and cultural heritage. Springer, New York. doi:10.1007/978-1-4020-2845-8
Book
Google Scholar
Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9. doi:10.1007/s00248-003-1052-5
CAS
Article
Google Scholar
Danin A, Caneva G (1990) Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int Biodeterior 26:397–417. doi:10.1016/0265-3036(90)90004-Q
Article
Google Scholar
de la Rosa JPMI, Casares Porcel M, Warke PA (2013a) Mapping stone surface temperature fluctuations: implications for lichen distribution and biomodification on historic stone surfaces. J Cult Herit 14:346–353. doi:10.1016/j.culher.2012.09.006
Article
Google Scholar
de la Rosa JPMI, Warke PA, Smith BJ (2013b) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Progress Phys Geography 37:325–351. doi:10.1177/0309133312467660
Article
Google Scholar
de Los Ríos A, Wierzchos J, Ascaso C (2002) Microhabitats and chemical microenvironments under saxicolous lichens growing on granite. Microb Ecol 43:181–188. doi:10.1007/s00248-001-1028-2
Article
Google Scholar
Dereeper A et al (2008) Phylogeny. Fr: robust phylogenetic analysis for the non-specialist. Nucl Acids Res 36:W465–W469. doi:10.1093/nar/gkn180
CAS
Article
Google Scholar
Di Carlo E, Barresi G, Palla F (2017) Biodeterioration. In: Palla F, Barresi G (eds) Biotechnology and conservation of cultural heritage. Springer, Cham, pp 1–30. doi:10.1007/978-3-319-46168-7_1
Farrar JF (1974) A method for investigating lichen growth rates and succession. The Lichenologist 6:151–155. doi:10.1017/S0024282974000247
Article
Google Scholar
Favero-Longo SE, Castelli D, Salvadori O, Belluso E, Piervittori R (2005) Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum Gr and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment. Int Biodeterior Biodegr 56:17–27. doi:10.1016/j.ibiod.2004.11.006
CAS
Article
Google Scholar
Frank-Kamenetskaya OV, Vlasov DY, Shilova OA (2012) Biogenic crystal genesis on a carbonate rock monument surface: the main factors and mechanisms, the development of nanotechnological ways of inhibition. In: Krivovichev SV (ed) Minerals as advanced materials II, vol 2. Springer, New York, pp 401–413. doi:10.1007/978-3-642-20018-2_37
Gazzano C, Favero-Longo SE, Matteucci E, Piervittori R (2009a) Image analysis for measuring lichen colonization on and within stonework. The Lichenologist 41:299–313. doi:10.1017/S0024282909008366
Article
Google Scholar
Gazzano C, Favero-Longo SE, Matteucci E, Roccardi A, Piervittori R (2009b) Index of lichen potential biodeteriogenic activity (Lpba): a tentative tool to evaluate the lichen impact on stonework. Int Biodeterior Biodegrad 63:836–843. doi:10.1016/j.ibiod.2009.05.006
Article
Google Scholar
Gerdes G, Dunajtschik-Piewak K, Riege H, Taher A, Krumbein W, Reineck H (1994) Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology 41:1273–1294. doi:10.1111/j.1365-3091.1994.tb01453.x
Article
Google Scholar
Gholipour-Shahraki M, Sohrabi M, Mohammadi P (2013) Diversity of lichens on the tomb of Cyrus the great, Pasargadae, Iran. In: Paper presented at the BioSyst.EU 2013 Global systematics, Austria
Herrera LK, Videla HA (2009) Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int Biodeterior Biodegrad 63:813–822. doi:10.1016/j.ibiod.2009.05.002
CAS
Article
Google Scholar
Hill DJ (2002) Measurement of lichen growth. In: Kranner IC, Beckett RP, Varma AK (eds) Protocols in lichenology: culturing, biochemistry, ecophysiology and use in biomonitoring, Springer, Berlin, pp 255–278. doi:10.1007/978-3-642-56359-1_16
Hoppert M, Flies C, Pohl W, Günzl B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428. doi:10.1007/s00254-004-1043-y
CAS
Article
Google Scholar
Jomelli V, Grancher D, Naveau P, Cooley D, Brunstein D (2007) Assessment study of lichenometric methods for dating surfaces. Geomorphology 86:131–143. doi:10.1016/j.geomorph.2006.08.010
Article
Google Scholar
Kondratyuk S et al (2014) A revised taxonomy for the subfamily caloplacoideae (Teloschistaceae, Ascomycota) based on molecular phylogeny. Acta Bot Hung 56:141–178. doi:10.1556/ABot.56.2014.1-2.12
Article
Google Scholar
Lan W, Li H, Wang W-D, Katayama Y, Gu J-D (2010) Microbial community analysis of fresh and old microbial biofilms on bayon temple sandstone of Angkor Thom, Cambodia. Microb Ecol 60:105–115. doi:10.1007/s00248-010-9707-5
Article
Google Scholar
Lisci M, Monte M, Pacini E (2003) Lichens and higher plants on stone: a review. Int Biodeterior Biodegrad 51:1–17. doi:10.1016/S0964-8305(02)00071-9
Article
Google Scholar
Mallowan M (1972) Cyrus the Great (558–529 Bc). Iran 10:1–17. doi:10.2307/4300460
Article
Google Scholar
McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451. doi:10.1890/1540-9295(2005)003[0445:MDOHS]2.0.CO;2
Article
Google Scholar
Mihajlovski A, Seyer D, Benamara H, Bousta F, Di Martino P (2015) An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann Microbiol 65:1243–1255. doi:10.1007/s13213-014-0956-2
Article
Google Scholar
Miller AZ, Sanmartín P, Pereira-Pardo L, Dionísio A, Saiz-Jimenez C, Macedo MF, Prieto B (2012) Bioreceptivity of building stones: a review. Sci Total Environ 426:1–12. doi:10.1016/j.scitotenv.2012.03.026
CAS
Article
Google Scholar
Mohammadi P, Krumbein WE (2008) Biodeterioration of ancient stone materials from the persepolis monuments (Iran). Aerobiologia 24:27–33. doi:10.1007/s10453-007-9079-6
Article
Google Scholar
Mohammadi P, Maghboli-Balasjin N (2014) Isolation and molecular identification of deteriorating fungi from Cyrus the Great tomb stones. Iran J Microbiol 6(5):361–370
Google Scholar
Mozaffari A (2014) World heritage in Iran: perspectives on pasargadae. Heritage, culture and identity. Ashgate Publishing Ltd, Famham
Google Scholar
Nascimbene J, Salvadori O (2008) Lichen recolonization on restored calcareous statues of three Venetian villas. Int Biodeterior Biodegrad 62:313–318. doi:10.1016/j.ibiod.2007.11.005
CAS
Article
Google Scholar
Nascimbene J, Salvadori O, Nimis PL (2009) Monitoring lichen recolonization on a restored calcareous statue. Sci Total Environ 407:2420–2426. doi:10.1016/j.scitotenv.2008.12.037
CAS
Article
Google Scholar
Nimis PL (2001) Artistic and historical monuments: threatened ecosystems. In: Frontiers of life, part 2: man and the environment, vol 2. Academic Press, San Diego, pp 557–569
Nimis PL, Salvadori O, Accornero E (1997) La Crescita Dei Licheni Sui Monumenti Di Un Parco. Uno Studio Pilota a Villa Manin. Il restauro delle sculture lapidee nel parco di Villa Manin a Passariano Il viale delle Erme 4:109–141
Google Scholar
Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I, Hasenekoglu İ (2006) The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci Tot Environ 364:272–283. doi:10.1016/j.scitotenv.2005.06.034
CAS
Article
Google Scholar
Prieto Lamas B, Rivas Brea MT, Silva Hermo BM (1995) Colonization by lichens of granite churches in Galicia (Northwest Spain). Sci Total Environ 167:343–351. doi:10.1016/0048-9697(95)04594-Q
Article
Google Scholar
Rafiee Fanood M, Saradj FM (2013) Learning from the past and planning for the future: conditions and proposals for stone conservation of the Mausoleum of Cyrus the Great in the world heritage site of pasargadae. Int J Archit Herit 7:434–460. doi:10.1080/15583058.2011.643527
Article
Google Scholar
Rodrigues JD, Anjos MV, Charola AE (2011) Recolonization of marble sculptures in a garden environment. Smithson Contrib Mus Conserv. doi:10.5479/si.19492359.2.1
Google Scholar
Sáiz-Jiménez C (1984) Weathering and colonization of limestones in an urban environment. In: Szegi J (ed) Soil biology and conservation of the biosphere, vol 2. Akademiai Kiado. Budapest, Hungary, pp 757–767
Google Scholar
Scheerer S, Ortega‐Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. In: Advances in applied microbiology, vol 66. Academic Press, Cambridge, pp 97–139. doi:10.1016/S0065-2164(08)00805-8
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089
CAS
Article
Google Scholar
Schoch CL et al (2012) Nuclear ribosomal internal transcribed spacer (Its) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246. doi:10.1073/pnas.1117018109
CAS
Article
Google Scholar
Seaward MR (2015) Lichens as agents of biodeterioration. In: Upreti DK, Shukla V, Divakar PK, Bajpai R (eds) Recent advances in lichenology, vol 1, Springer, pp 189–211. doi:10.1007/978-81-322-2181-4_9
Steiger M, Charola AE, Sterflinger K (2011) Weathering and deterioration. In: Stone in architecture. Springer, New York, pp 227–316. doi:10.1007/978-3-642-14475-2_4
Stronach D (1964) Excavations at Pasargadae: second preliminary report. Iran 2:21–39. doi:10.2307/4299550
Article
Google Scholar
Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. In: Proceedings ARIADNE Workshop 9—historic materials and their diagnostic. http://www.arcchip.cz/w09/w09_tiano.pdf. Accessed 23 Mar 2012
Vondrak J et al (2016) The extensive geographical range of several species of teloschistaceae: evidence from Russia. The Lichenologist 48:171–189. doi:10.1017/S0024282916000116
Article
Google Scholar
Wadsten T, Moberg R (1985) Calcium oxalate hydrates on the surface of lichens. The Lichenologist 17:239–245. doi:10.1017/S0024282985000305
CAS
Article
Google Scholar
Warscheid T (2015) Microbiology and archaeology. Microbial impacts at historical sites during excavation and conservation. ICOMOS–Hefte des Deutschen Nationalkomitees 42:35–48. doi:10.11588/ih.2005.0.20601
Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368. doi:10.1016/S0964-8305(00)00109-8
CAS
Article
Google Scholar
Whitlatch RB, Johnson RG (1974) Methods for staining organic matter in marine sediments. J Sediment Res. doi:10.1306/212F6CAD-2B24-11D7-8648000102C1865D
Google Scholar
Wierzchos J et al (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the atacama desert. Front Microbiol. doi:10.3389/fmicb.2015.00934
Google Scholar