Advertisement

International Journal of Environmental Research

, Volume 11, Issue 4, pp 501–513 | Cite as

The Study of Growth of Calogaya sp. PLM8 on Cyrus the Great’s Tomb, UNESCO World Heritage Site in Iran

  • Mahnaz Gholipour-Shahraki
  • Parisa MohammadiEmail author
Research paper

Abstract

The tomb of Cyrus the Great, the most important monument in Pasargadae, has been listed as a world heritage site by UNESCO. Like many other stone monuments, the tomb has been affected by the colonization of microbial communities, especially lichens that were subjected to physical elimination in 2006. In the present study, recolonization of Calogaya sp. PLM8, a crustose lichen and its role in biodeterioration of Cyrus the Great tomb have been evaluated. Calogaya sp. PLM8 commonly colonized on this monument with significant distribution in the different facades. The interface of Calogaya sp. PLM8 with the underlying substrate has been investigated using the periodic acid-Schiff staining, scanning electron microscopy and energy-dispersive spectroscopy techniques. The results showed that both colonization of the lichen on the surface and symbiont cells penetration into the stone had caused extensive physical and chemical biodeterioration of the substrate. Besides the presence of the symbionts in the endolithic niches, other lithobiont microorganisms have been detected inside the stones. The presence of these endolithic microorganisms seems to be conditioned by the presence of the epilithic lichen thallus and its effects on the formation of microenvironments in the colonized stone. The lithobiont communities interact both geophysically and geochemically with the lithic substrate, inducing biodeterioration alteration in the tomb of Cyrus the Great.

Keywords

Cyrus the Great tomb Biodeterioration Lichen Endoliths Calogaya sp. PLM8 

Notes

Acknowledgements

This project was supported by Iran National Science Foundation (INSF), Code Number 88001692 and was carried out at the national laboratory of industrial microbiology of Alzahra University. The authors would like to thank Professor Ali Asghar Masoumi and his lichen herbarium staffs for their scientific help and the personnel of Pasargadae site for their supports and assistance during the field activity.

References

  1. Aghamiri RR, Schwartzman DW (2002) Weathering rates of bedrock by lichens: a mini watershed study. Chem Geol 188:249–259. doi: 10.1016/S0009-2541(02)00105-5 CrossRefGoogle Scholar
  2. Alam MA (2014) Growth chamber experiments on lichens: temperature and humidity regimes rapidly shape growth rates and carbohydrate contents. Norwegian University of Life Sciences, OsloGoogle Scholar
  3. Aptroot A, James PW (2002) Monitoring Lichens on Monuments. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens—monitoring lichens. Springer, Dordrecht, pp 239–253. doi: 10.1007/978-94-010-0423-7_16
  4. Ariño X, Saiz-Jimenez C (1996) Colonization and deterioration processes in Roman mortars by cyanobacteria, algae and lichens. Aerobiologia 12:9–18. doi: 10.1007/BF02248118 CrossRefGoogle Scholar
  5. Armstrong RA (2005) Radial growth of Rhizocarpon section Rhizocarpon lichen thalli over six years at Snoqualmie Pass in the Cascade Range, Washington State. Arct Antarct Alp Res 37:411–415. doi:10.1657/1523-0430(2005)037[0411:RGORSR]2.0.CO;2Google Scholar
  6. Armstrong RA (2014) Within-site variation in lichen growth rates and its implications for direct lichenometry. Geogr Ann Ser A Phys Geogr 96:217–226. doi: 10.1111/geoa.12043 CrossRefGoogle Scholar
  7. Armstrong RA (2015) The influence of environmental factors on the growth of lichens in the field. In: Upreti DK, Divakar PK, Shukla V, Bajpai R (eds) Recent advances in lichenology: modern methods and approaches in biomonitoring and bioprospection, vol 1. Springer, New Delhi, pp 1–18. doi: 10.1007/978-81-322-2181-4_1
  8. Ascaso C, Wierzchos J (1994) Structural aspects of the lichen-rock interface using back-scattered electron imaging. Bot Acta 107:251–256. doi: 10.1111/j.1438-8677.1994.tb00793.x CrossRefGoogle Scholar
  9. Ascaso C, Wierzchos J, Souza-Egipsy V, delos Riosa A, Delgado Rodrigues J (2002) In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock. Int Biodeterior Biodegr 49:1–12. doi: 10.1016/S0964-8305(01)00097-X CrossRefGoogle Scholar
  10. Bungartz F, Garvie LA, Nash TI (2004) Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. The Lichenologist 36:55–73. doi: 10.1017/S0024282904013854 CrossRefGoogle Scholar
  11. Cámara B, De los Ríos A, Urizal M, Álvarez de Buergo M, Varas M, Fort R, Ascaso C (2011) Characterizing the microbial colonization of a dolostone quarry: implications for stone biodeterioration and response to biocide treatments. Microb Ecol 62:299–313. doi: 10.1007/s00248-011-9815-x CrossRefGoogle Scholar
  12. Cappitelli F, Villa F, Polo A (2014) Culture-Independent Methods to Study Subaerial Biofilm Growing on Biodeteriorated Surfaces of Stone Cultural Heritage and Frescoes. In: Donelli G (ed) Microbial biofilms: methods and protocols. Springer, New York, pp 341–366. doi: 10.1007/978-1-4939-0467-9_24
  13. Casanova Municchia A, Percario Z, Caneva G (2014) Detection of endolithic spatial distribution in marble stone. J Microsc 256:37–45. doi: 10.1111/jmi.12155 CrossRefGoogle Scholar
  14. Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. CATENA 39:121–146. doi: 10.1016/S0341-8162(99)00085-5 CrossRefGoogle Scholar
  15. Clair LS, Seaward MR (2004) Biodeterioration of stone surfaces: lichens and biofilms as weathering agents of rocks and cultural heritage. Springer, New York. doi: 10.1007/978-1-4020-2845-8 CrossRefGoogle Scholar
  16. Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9. doi: 10.1007/s00248-003-1052-5 CrossRefGoogle Scholar
  17. Danin A, Caneva G (1990) Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int Biodeterior 26:397–417. doi: 10.1016/0265-3036(90)90004-Q CrossRefGoogle Scholar
  18. de la Rosa JPMI, Casares Porcel M, Warke PA (2013a) Mapping stone surface temperature fluctuations: implications for lichen distribution and biomodification on historic stone surfaces. J Cult Herit 14:346–353. doi: 10.1016/j.culher.2012.09.006 CrossRefGoogle Scholar
  19. de la Rosa JPMI, Warke PA, Smith BJ (2013b) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Progress Phys Geography 37:325–351. doi: 10.1177/0309133312467660 CrossRefGoogle Scholar
  20. de Los Ríos A, Wierzchos J, Ascaso C (2002) Microhabitats and chemical microenvironments under saxicolous lichens growing on granite. Microb Ecol 43:181–188. doi: 10.1007/s00248-001-1028-2 CrossRefGoogle Scholar
  21. Dereeper A et al (2008) Phylogeny. Fr: robust phylogenetic analysis for the non-specialist. Nucl Acids Res 36:W465–W469. doi: 10.1093/nar/gkn180 CrossRefGoogle Scholar
  22. Di Carlo E, Barresi G, Palla F (2017) Biodeterioration. In: Palla F, Barresi G (eds) Biotechnology and conservation of cultural heritage. Springer, Cham, pp 1–30. doi: 10.1007/978-3-319-46168-7_1
  23. Farrar JF (1974) A method for investigating lichen growth rates and succession. The Lichenologist 6:151–155. doi: 10.1017/S0024282974000247 CrossRefGoogle Scholar
  24. Favero-Longo SE, Castelli D, Salvadori O, Belluso E, Piervittori R (2005) Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum Gr and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment. Int Biodeterior Biodegr 56:17–27. doi: 10.1016/j.ibiod.2004.11.006 CrossRefGoogle Scholar
  25. Frank-Kamenetskaya OV, Vlasov DY, Shilova OA (2012) Biogenic crystal genesis on a carbonate rock monument surface: the main factors and mechanisms, the development of nanotechnological ways of inhibition. In: Krivovichev SV (ed) Minerals as advanced materials II, vol 2. Springer, New York, pp 401–413. doi: 10.1007/978-3-642-20018-2_37
  26. Gazzano C, Favero-Longo SE, Matteucci E, Piervittori R (2009a) Image analysis for measuring lichen colonization on and within stonework. The Lichenologist 41:299–313. doi: 10.1017/S0024282909008366 CrossRefGoogle Scholar
  27. Gazzano C, Favero-Longo SE, Matteucci E, Roccardi A, Piervittori R (2009b) Index of lichen potential biodeteriogenic activity (Lpba): a tentative tool to evaluate the lichen impact on stonework. Int Biodeterior Biodegrad 63:836–843. doi: 10.1016/j.ibiod.2009.05.006 CrossRefGoogle Scholar
  28. Gerdes G, Dunajtschik-Piewak K, Riege H, Taher A, Krumbein W, Reineck H (1994) Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology 41:1273–1294. doi: 10.1111/j.1365-3091.1994.tb01453.x CrossRefGoogle Scholar
  29. Gholipour-Shahraki M, Sohrabi M, Mohammadi P (2013) Diversity of lichens on the tomb of Cyrus the great, Pasargadae, Iran. In: Paper presented at the BioSyst.EU 2013 Global systematics, AustriaGoogle Scholar
  30. Herrera LK, Videla HA (2009) Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int Biodeterior Biodegrad 63:813–822. doi: 10.1016/j.ibiod.2009.05.002 CrossRefGoogle Scholar
  31. Hill DJ (2002) Measurement of lichen growth. In: Kranner IC, Beckett RP, Varma AK (eds) Protocols in lichenology: culturing, biochemistry, ecophysiology and use in biomonitoring, Springer, Berlin, pp 255–278. doi: 10.1007/978-3-642-56359-1_16
  32. Hoppert M, Flies C, Pohl W, Günzl B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428. doi: 10.1007/s00254-004-1043-y CrossRefGoogle Scholar
  33. Jomelli V, Grancher D, Naveau P, Cooley D, Brunstein D (2007) Assessment study of lichenometric methods for dating surfaces. Geomorphology 86:131–143. doi: 10.1016/j.geomorph.2006.08.010 CrossRefGoogle Scholar
  34. Kondratyuk S et al (2014) A revised taxonomy for the subfamily caloplacoideae (Teloschistaceae, Ascomycota) based on molecular phylogeny. Acta Bot Hung 56:141–178. doi: 10.1556/ABot.56.2014.1-2.12 CrossRefGoogle Scholar
  35. Lan W, Li H, Wang W-D, Katayama Y, Gu J-D (2010) Microbial community analysis of fresh and old microbial biofilms on bayon temple sandstone of Angkor Thom, Cambodia. Microb Ecol 60:105–115. doi: 10.1007/s00248-010-9707-5 CrossRefGoogle Scholar
  36. Lisci M, Monte M, Pacini E (2003) Lichens and higher plants on stone: a review. Int Biodeterior Biodegrad 51:1–17. doi: 10.1016/S0964-8305(02)00071-9 CrossRefGoogle Scholar
  37. Mallowan M (1972) Cyrus the Great (558–529 Bc). Iran 10:1–17. doi: 10.2307/4300460 CrossRefGoogle Scholar
  38. McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451. doi: 10.1890/1540-9295(2005)003[0445:MDOHS]2.0.CO;2 CrossRefGoogle Scholar
  39. Mihajlovski A, Seyer D, Benamara H, Bousta F, Di Martino P (2015) An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann Microbiol 65:1243–1255. doi: 10.1007/s13213-014-0956-2 CrossRefGoogle Scholar
  40. Miller AZ, Sanmartín P, Pereira-Pardo L, Dionísio A, Saiz-Jimenez C, Macedo MF, Prieto B (2012) Bioreceptivity of building stones: a review. Sci Total Environ 426:1–12. doi: 10.1016/j.scitotenv.2012.03.026 CrossRefGoogle Scholar
  41. Mohammadi P, Krumbein WE (2008) Biodeterioration of ancient stone materials from the persepolis monuments (Iran). Aerobiologia 24:27–33. doi: 10.1007/s10453-007-9079-6 CrossRefGoogle Scholar
  42. Mohammadi P, Maghboli-Balasjin N (2014) Isolation and molecular identification of deteriorating fungi from Cyrus the Great tomb stones. Iran J Microbiol 6(5):361–370Google Scholar
  43. Mozaffari A (2014) World heritage in Iran: perspectives on pasargadae. Heritage, culture and identity. Ashgate Publishing Ltd, FamhamGoogle Scholar
  44. Nascimbene J, Salvadori O (2008) Lichen recolonization on restored calcareous statues of three Venetian villas. Int Biodeterior Biodegrad 62:313–318. doi: 10.1016/j.ibiod.2007.11.005 CrossRefGoogle Scholar
  45. Nascimbene J, Salvadori O, Nimis PL (2009) Monitoring lichen recolonization on a restored calcareous statue. Sci Total Environ 407:2420–2426. doi: 10.1016/j.scitotenv.2008.12.037 CrossRefGoogle Scholar
  46. Nimis PL (2001) Artistic and historical monuments: threatened ecosystems. In: Frontiers of life, part 2: man and the environment, vol 2. Academic Press, San Diego, pp 557–569Google Scholar
  47. Nimis PL, Salvadori O, Accornero E (1997) La Crescita Dei Licheni Sui Monumenti Di Un Parco. Uno Studio Pilota a Villa Manin. Il restauro delle sculture lapidee nel parco di Villa Manin a Passariano Il viale delle Erme 4:109–141Google Scholar
  48. Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I, Hasenekoglu İ (2006) The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci Tot Environ 364:272–283. doi: 10.1016/j.scitotenv.2005.06.034 CrossRefGoogle Scholar
  49. Prieto Lamas B, Rivas Brea MT, Silva Hermo BM (1995) Colonization by lichens of granite churches in Galicia (Northwest Spain). Sci Total Environ 167:343–351. doi: 10.1016/0048-9697(95)04594-Q CrossRefGoogle Scholar
  50. Rafiee Fanood M, Saradj FM (2013) Learning from the past and planning for the future: conditions and proposals for stone conservation of the Mausoleum of Cyrus the Great in the world heritage site of pasargadae. Int J Archit Herit 7:434–460. doi: 10.1080/15583058.2011.643527 CrossRefGoogle Scholar
  51. Rodrigues JD, Anjos MV, Charola AE (2011) Recolonization of marble sculptures in a garden environment. Smithson Contrib Mus Conserv. doi: 10.5479/si.19492359.2.1 Google Scholar
  52. Sáiz-Jiménez C (1984) Weathering and colonization of limestones in an urban environment. In: Szegi J (ed) Soil biology and conservation of the biosphere, vol 2. Akademiai Kiado. Budapest, Hungary, pp 757–767Google Scholar
  53. Scheerer S, Ortega‐Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. In: Advances in applied microbiology, vol 66. Academic Press, Cambridge, pp 97–139. doi: 10.1016/S0065-2164(08)00805-8
  54. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefGoogle Scholar
  55. Schoch CL et al (2012) Nuclear ribosomal internal transcribed spacer (Its) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246. doi: 10.1073/pnas.1117018109 CrossRefGoogle Scholar
  56. Seaward MR (2015) Lichens as agents of biodeterioration. In: Upreti DK, Shukla V, Divakar PK, Bajpai R (eds) Recent advances in lichenology, vol 1, Springer, pp 189–211. doi: 10.1007/978-81-322-2181-4_9
  57. Steiger M, Charola AE, Sterflinger K (2011) Weathering and deterioration. In: Stone in architecture. Springer, New York, pp 227–316. doi: 10.1007/978-3-642-14475-2_4
  58. Stronach D (1964) Excavations at Pasargadae: second preliminary report. Iran 2:21–39. doi: 10.2307/4299550 CrossRefGoogle Scholar
  59. Tiano P (2002) Biodegradation of cultural heritage: decay mechanisms and control methods. In: Proceedings ARIADNE Workshop 9—historic materials and their diagnostic. http://www.arcchip.cz/w09/w09_tiano.pdf. Accessed 23 Mar 2012
  60. Vondrak J et al (2016) The extensive geographical range of several species of teloschistaceae: evidence from Russia. The Lichenologist 48:171–189. doi: 10.1017/S0024282916000116 CrossRefGoogle Scholar
  61. Wadsten T, Moberg R (1985) Calcium oxalate hydrates on the surface of lichens. The Lichenologist 17:239–245. doi: 10.1017/S0024282985000305 CrossRefGoogle Scholar
  62. Warscheid T (2015) Microbiology and archaeology. Microbial impacts at historical sites during excavation and conservation. ICOMOS–Hefte des Deutschen Nationalkomitees 42:35–48. doi: 10.11588/ih.2005.0.20601
  63. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368. doi: 10.1016/S0964-8305(00)00109-8 CrossRefGoogle Scholar
  64. Whitlatch RB, Johnson RG (1974) Methods for staining organic matter in marine sediments. J Sediment Res. doi: 10.1306/212F6CAD-2B24-11D7-8648000102C1865D Google Scholar
  65. Wierzchos J et al (2015) Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the atacama desert. Front Microbiol. doi: 10.3389/fmicb.2015.00934 Google Scholar

Copyright information

© University of Tehran 2017

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of Biological SciencesAlzahra UniversityTehranIslamic Republic of Iran

Personalised recommendations