Skip to main content
Log in

Flexible digital manufacturing of timber construction: the design and fabrication of a free-form nexorade

  • Original Paper
  • Published:
Construction Robotics Aims and scope Submit manuscript

Abstract

This article investigates the application of a multi-robotic platform to the fabrication of complex “free-form” timber structures. A concept of “smart factory”, with a 13-DOF robotic cell combining robotic mobility with fixed workstations, is proposed. A computational workflow was implemented to allow for fast iterations during the early design stage. The robotic cell design and design workflow are implemented in practical experiments conducted in the framework of intensive workshops. A productivity assessment is performed on a 50 m\(^2\) pavilion pre-fabricated with the proposed robotic cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. https://www.insee.fr/en/statistiques/serie/001565188 and https://www.insee.fr/en/statistiques/1304009.

References

  • Andrew B (2010) New challenges for the structural morphology group. J Int Assoc Shell Spatial Struct 51(3):183–189

    Google Scholar 

  • Austern G, Capeluto IG, Grobman YJ (2018) Rationalization methods in computer aided fabrication: a critical review. Autom Constr 90:281–293

    Article  Google Scholar 

  • Baverel O, Nooshin H, Kuroiwa Y, Parke GAR (2000) Nexorades. Int J Space Struct 15(2):155–159

    Article  Google Scholar 

  • Bertin I, Mesnil R, Jaeger J-M, Feraille A, Le Roy R (2020) A bim-based framework and databank for reusing load-bearing structural elements. Sustainability 12(8):3147

    Article  Google Scholar 

  • Bleyer J, de Buhan P (2013) Yield surface approximation for lower and upper bound yield design of 3d composite frame structures. Comput Struct 129:86–98

    Article  Google Scholar 

  • Bock T-A (1988) Robot-oriented design. In Rokuro Ishikawa, editor, Proceedings of the 5th International Symposium on Automation and Robotics in Construction (ISARC), pages 135–144, Tokyo, Japan, June 1988. International Association for Automation and Robotics in Construction (IAARC)

  • Bock T, Linner T (2015) Robot-oriented design: design and management tools for the deployment of automation and robotics in construction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bock T, Linner T (2015) Robotic industrialization: automation and robotic technologies for customized component, module, and building prefabrication. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bock T, Linner T (2015) Building module manufacturing, page 66–71. Cambridge University Press, Cambridge

    Google Scholar 

  • Bock T, Langenberg S (2014) Changing building sites: industrialisation and automation of the building process. Archit Des 84(3), 2014

  • Bock T, Linner T (2015) Complex products in other industries and relevance of fixed-site/on-site manufacturing technology, page 125–155. Cambridge University Press

  • Caron J-F, Baverel O, Douthe C, Mesnil R, Gobin T (2018) Proposals to make complex structures affordable. pages S5–63–S5–70

  • Cuvilliers P, Douthe C, Peloux LD, Le Roy R (2017) Hybrid structural skin: prototype of a gfrp elastic gridshell braced by a fiber-reinforced concrete envelope. Journal of the International Association for Shell and Spatial Structures 58(1):65–78

    Article  Google Scholar 

  • C. Douthe, M. Bagnéris, L. du Peloux, and R. Mesnil. Building freeform: A workshop experiment from design to fabrication. page 252 – 261, 2018

  • Douthe C, Mesnil R, Orts H, Baverel O (2017) Isoradial meshes: Covering elastic gridshells with planar facets. Autom Constr 83:222–236

    Article  Google Scholar 

  • Fabian Scheurer, Hanno Stehling, Franz Tschümperlin, and Martin Antemann (2013) Design for assembly–digital prefabrication of complex timber structures. In Proceedings of IASS Annual Symposia, volume 2013, pages 1–7. International Association for Shell and Spatial Structures (IASS)

  • Gilibert P, Mesnil R, Baverel O (2022) Rule-based generative design of translational and rotational interlocking assemblies. Autom Constr 135:104142

    Article  Google Scholar 

  • Gunter Ullrich. Automated guided vehicle systems. Information Systems Frontiers, 17, 2015

  • Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243

    Article  Google Scholar 

  • Hanno Stehling, Fabian Scheurer, and Jean Roulier (2014) Bridging the gap from cad to cam: concepts, caveats and a new grasshopper plug-in. Fabricate 2014. Negotiating design and making, pages 52–59

  • Hozdić E (2015) Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies 7(1):28–35

    Google Scholar 

  • Isaac S, Bock T, Stoliar Y (2016) A methodology for the optimal modularization of building design. Autom Constr 65:116–124

    Article  Google Scholar 

  • Johannes Braumann and Sigrid Brell-Cokcan (2011) Parametric robot control: integrated cad/cam for architectural design

  • Jürgen Andres, Thomas Bock, Friedrich Gebhart, and Werner Steck. First results of the development of the masonry robot system rocco: a fault tolerant assembly tool. In Automation and Robotics in Construction XI, pages 87–93. Elsevier, 1994

  • Knippers J, Helbig T (2009) Recent developments in the design of glazed grid shells. Int J Space Struct 24(2):111–126

    Article  Google Scholar 

  • Kohlhammer T, Apolinarska AA, Gramazio F, Kohler M (2017) Design and structural analysis of complex timber structures with glued t-joint connections for robotic assembly. Int J Space Struct 32(3–4):199–215

    Article  Google Scholar 

  • Kunic A, Naboni R, Kramberger A, Schlette C (2021) Design and assembly automation of the robotic reversible timber beam. Autom Constr 123:103531

    Article  Google Scholar 

  • Liu Y, Pottmann H, Wallner J, Yang Y-L, Wang W (2006) Geometric modeling with conical meshes and developable surfaces. In: ACM SIGGRAPH 2006 Papers, pages 681–689

  • Loing V, Marlet R, Aubry M (2018) Virtual training for a real application: Accurate object-robot relative localization without calibration. Int J Comput Vision 126(9):1045–1060

    Article  Google Scholar 

  • Mabkhot MM, Al-Ahmari AM, Salah B, Alkhalefah H (2018) Requirements of the smart factory system: A survey and perspective. Machines 6(2):23

    Article  Google Scholar 

  • Masson Y, Monasse L (2017) Existence of global chebyshev nets on surfaces of absolute gaussian curvature less than \(2\pi\). J Geom 108(1):25–32

    Article  MathSciNet  MATH  Google Scholar 

  • Menges A, Schwinn T, Krieg OD (2016) Advancing wood architecture - a computational approach

  • Mesnil Romain, Douthe Cyril, Gobin Tristan, Baverel Olivier (2018) Form finding and design of a timber shell-nexorade hybrid. In Advances in Architectural Geometry, (2018) AAG 2018. Göteborg, Sweden, September

  • Mesnil R (2018) A re-parameterization approach for the construction of domes with planar facets. Journal of the International Association for Shell and Spatial Structures 59(4):286–295

    Article  Google Scholar 

  • Mesnil R, Douthe C, Baverel O, Léger B, Caron J-F (2015) Isogonal moulding surfaces: A family of shapes for high node congruence in free-form structures. Autom Constr 59:38–47

    Article  Google Scholar 

  • Mesnil R, Douthe C, Baverel O, Léger B (2018) Morphogenesis of surfaces with planar lines of curvature and application to architectural design. Autom Constr 95:129–141

    Article  Google Scholar 

  • Mesnil R, Douthe C, Baverel O, Gobin T (2018) Form finding of nexorades using the translations method. Autom Constr 95:142–154

    Article  Google Scholar 

  • Mollica Z, Self M (2016) Tree fork truss. Advances in Architectural Geometry 138–153:2016

    Google Scholar 

  • Nubiola A, Bonev IA (2013) Absolute calibration of an abb irb 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing 29(1):236–245

    Article  Google Scholar 

  • Olivier LS Baverel (2000) Nexorades: a family of interwoven space structures. PhD thesis, University of Surrey

  • Picon A (2017) L’ornement architectural Entre subjectivité et politique. Presses polytechniques et universitaires romandes

  • Pottmann H, Eigensatz M, Vaxman A, Wallner J (2015) Architectural geometry. Computers & Graphics 47:145–164

    Article  Google Scholar 

  • Pottmann H, Liu Y, Wallner J, Bobenko A, Wang W (2007) Geometry of multi-layer freeform structures for architecture. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, page 65, New York, NY, USA. Association for Computing Machinery

  • Robeller C, Weinand Y (2015) Interlocking folded plate-integral mechanical attachment for structural wood panels. Int J Space Struct 30(2):111–122

    Article  Google Scholar 

  • Robeller C, Konaković M, Dedijer M, Pauly M, Weinand Y (2017) Double-layered timber plate shell. Int J Space Struct 32(3–4):160–175

    Article  Google Scholar 

  • Romain Mesnil, Cyril Douthe, and Olivier Baverel. Marionette meshes: from descriptive geometry to fabrication-aware design. Advances in Architectural Geometry, 2016

  • Romain Mesnil, Olivier Baverel, and Cyril Douthe (2017) Marionette meshes: modelling free-form architecture with planar facets. International Journal of Space Structures, 32

  • Rupnik E, Daakir M, Deseilligny MP (2017) Micmac-a free, open-source solution for photogrammetry. Open Geospatial Data, Software and Standards 2(1):1–9

    Article  Google Scholar 

  • Samuel Leder, Ramon Weber, Dylan Wood, Oliver Bucklin, and Achim Menges (2019) Distributed robotic timber construction: Designing of in-situ timber construction system with robot-material collaboration. ACADIA 2019

  • Santiago Martínez, Alberto Jardón, Juan Gonzalez Victores, and Carlos Balaguer. Flexible field factory for construction industry. Assembly Automation, 2013

  • Sarkar A, Biswas A, Dutt M, Bhattacharya A (2018) Finding a largest rectangle inside a digital object and rectangularization. J Comput Syst Sci 95:204–217

    Article  MathSciNet  MATH  Google Scholar 

  • Scheurer F (2007) Getting complexity organised: using self-organisation in architectural construction. Autom Constr 16(1):78–85

    Article  Google Scholar 

  • Schober H (2015) Transparent shells: form, topology, structure. Wiley, Amsterdam

    Book  Google Scholar 

  • Schwartz T, Bard J, Ganon M, Jacobson-Weaver Z, Jeffers M (2014) and Richard Tursky. In Robotic Fabrication in Architecture, Art and Design

    Google Scholar 

  • Shneiderman B (1982) The future of interactive systems and the emergence of direct manipulation. Behaviour & Information Technology 1(3):237–256

    Article  Google Scholar 

  • Sun Lei, Liu Jingtai, Sun Weiwei, Wu Shuihua, and Huang Xingbo. Geometry-based robot calibration method. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, volume 2, pages 1907–1912. IEEE, 2004

  • Thibault Schwartz (2013) HAL: Extension of a visual programming language to support teaching and research on robotics applied to construction. Rob\(\vert\)Arch 2012, pages 92–10

  • Thoma A, Adel A, Helmreich M, Wehrle T, Gramazio F, Kohler M (2018) Robotic fabrication of bespoke timber frame modules. In Robotic Fabrication in Architecture, Art and Design, pages 447–458. Springer

  • Thomas Bock and Thomas Linner. Robotic industrialization: Automation and robotic technologies for customized component, module, and building prefabrication. 2015

  • Tristan Gobin, Sebastian Andraos, Thibault Schwartz, and Rémi Vriet (2022) A framework for modelling, simulating and parametrically programming heterogeneous industrial machines. Construction Robotics, pages 1–8

  • Villanueva EM, Mamledesai H, Martinez P, Poostchi P, Ahmad R (2021) Design and simulation of an automated robotic machining cell for cross-laminated timber panels. Procedia CIRP 100:175–180

    Article  Google Scholar 

  • Volker Helm, Michael Knauss, Thomas Kohlhammer, Fabio Gramazio, and Matthias Kohler (2016) Additive robotic fabrication of complex timber structures. In Advancing Wood Architecture: A Computational Approach, pages 29–43. Routledge

  • Wagner HJ, Alvarez M, Groenewolt A, Menges A (2020) Towards digital automation flexibility in large-scale timber construction: integrative robotic prefabrication and co-design of the buga wood pavilion. Construction Robotics 4(3–4):187–204

    Article  Google Scholar 

  • Wagner HJ, Alvarez M, Kyjanek O, Bhiri Z, Buck M, Menges A (2020) Flexible and transportable robotic timber construction platform - tim. Autom Constr 120:103400

    Article  Google Scholar 

  • Willmann J, Knauss M, Bonwetsch T, Apolinarska AA, Gramazio F, Kohler M (2016) Robotic timber construction - expanding additive fabrication to new dimensions. Autom Constr 61:16–23

    Article  Google Scholar 

  • Zhuang H, Roth ZS (2018) Camera-aided robot calibration. CRC Press, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Mesnil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesnil, R., Gobin, T., Demont, L. et al. Flexible digital manufacturing of timber construction: the design and fabrication of a free-form nexorade. Constr Robot 7, 193–212 (2023). https://doi.org/10.1007/s41693-023-00105-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41693-023-00105-7

Keywords

Navigation