Skip to main content

Identifying building typologies and their spatial patterns in the metropolitan areas of Marseille and Osaka

Abstract

Buildings are an essential component of urban form. Urban morphologists know that buildings can be classified by type, but types are specific to given cultural areas. In a transnational context, detailed expert knowledge is not always available, hence the need for identifying typologies of buildings inductively from large urban databases exists. This paper presents the application of a Bayesian Network clustering protocol to buildings and the study of the spatial aggregates of the obtained family types for two metropolitan areas located in countries with marked cultural and societal differences: Osaka-Kobe in Japan and Marseille-Provence in France. Six indicators of building characteristics are calculated and used to perform the clustering: Footprint Surface, Elongation, Convexity, Number of Adjoining Neighbors, Height and Specialization. Cluster results are first extracted, detailed and analyzed and then, building type prevalence is studied at the metropolitan scale using local indicators of network-constrained clusters (ILINCS). The building families obtained through clustering show that these two coastal metropolitan areas are made up of apparently similar “ingredients” (very similar typologies are found at the relatively coarse level of detail of our study), but with different weights and spatial organization. This approach is appropriate for the automated processing of large building datasets and the results are a good entry point to study the link between building families, urban development periods and urban functions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    http://www.urbanform.org/bibliography.html.

  2. 2.

    A topological neighborhood of order 3 was used to delimit the surrounding values.

References

  1. Anselin L (1995) Local indicators of spatial association. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  2. Araldi A, Fusco G (2017) Decomposing and recomposing urban fabric: the city from the pedestrian point of view. In: Gervasi O et al. (eds) Computational science and its applications—ICCSA 2017, proceedings, part IV. Lecture notes in computer science, vol 10407, pp 365–376

    Chapter  Google Scholar 

  3. Araldi A, Perez J, Fusco G, Fuse T (2018) Multiple fabric assessment: focus on method versatility and flexibility. In: Gervasi O et al (eds) Computational science and its applications—ICCSA 2018. ICCSA 2018. Lecture notes in computer science, vol 10962. Springer, Cham

    Chapter  Google Scholar 

  4. Berghauser Pont MY, Haupt P (2010) SPACEMATRIX, space, density and urban form. NAi Publishers, Rotterdam, p 279

    Google Scholar 

  5. Biljecki F, Ledoux H, Stoter J (2016) An improved LOD specification for 3D building models. Comput Environ Urban Syst 59:25–37

    Article  Google Scholar 

  6. Brown FE, Steadman JP (1991a) The morphology of British housing: an empirical basis for policy and research. Part 1: functional and dimensional characteristics. Environ Plan B Plan Des 18:277–299

    Article  Google Scholar 

  7. Brown FE, Steadman JP (1991b) The morphology of British housing: an empirical basis for policy and research. Part 2: topological characteristics. Environ Plan B Plan Des 18:385–415

    Article  Google Scholar 

  8. Caniggia G, Maffei GL (2001) Architectural composition and building typology: interpreting basic building Alinea Editrice, Firenze; translated by S.J. Frazer, first published in Italian in 1979

  9. Conzen MRG (1969) Alnwick, Northumberland: a study in town-plan analysis, vol 27, 2nd edn. Institute of British Geographers Publication, London

    Google Scholar 

  10. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38

    Google Scholar 

  11. Duda RO, Hart PE (1973) Pattern classification and scene analysis. Wiley, New York

    Google Scholar 

  12. Fisher F (2001) Building bridges through participatory planning, part I, UN-HABITAT. https://unhabitat.org/books/building-bridges-through-participatory-planning-part-1/. Accessed 25 Aug 2018

  13. Fusco G (2016) Beyond the built-up form/mobility relationship: spatial affordance and lifestyles. Comput Environ Urban Syst 60:50–66

    Article  Google Scholar 

  14. Fusco G, Araldi A (2017) Significant patterns in urban form. Spatial analysis of morphological indicators. Revue Internationale de Géomatique, 4/2017, pp 455–479

  15. Fusco G, Perez J (2019) Bayesian network clustering and self-organizing maps under the test of Indian Districts. A comparison. Cybergeo Eur Geogr Syst Modél Géostat (Document 887)

  16. Galan Aguilar MP (2015) Participatory design for public urban spaces. UN Global Compact Cities Programme, Melbourne

    Google Scholar 

  17. Giedion S (1948) Mechanization takes command, a contribution to anonymous history. Oxford University Press, Oxford

    Google Scholar 

  18. Gil J, Beirao JN, Montenegro N, Duarte J (2012) On the discovery of urban typologies: data mining the many dimensions of urban form. Urban Morphol 16(1):27

    Google Scholar 

  19. Gourdon J-L (2001) La rue, essai sur l’économie de la forme urbaine. La Tour d’Aigue: Editions de l’Aube

  20. Haggag MA, Ayad HM (2002) The urban structural units method: a basis for evaluating environmental prospects for sustainable development. Urban Des Int 7:97–108

    Article  Google Scholar 

  21. Hanna S (2007) Automated representation of style by feature space archetypes: distinguishing spatial styles from generative rule. Int J Archit Comput 5:2–23

    Article  Google Scholar 

  22. Hecht R (2014) Automatische Klassifizierung von Gebäudegrundrissen. Ein Betrag sur kleinräumigen Beschreibung der Siedlungstruktur. IÖR Schriften Band 63. Rhombos-Verlag, Berlin

  23. Hillier B (1996) Space is the machine. Cambridge University Press, Cambridge

    Google Scholar 

  24. Langley P, Iba W, Thompson K. (1992) An analysis of Bayesian classifiers. In: Proceedings of the tenth national conference on artificial intelligence, San Jose, pp 223–238

  25. Le Corbusier (1924) Mass produced housing, translated by Tim Benton. Architecture and design, 1890–1939: an international anthology of original articles. The Whitney Library of Design. New York, 1975

  26. Maceachren A (1985) Compactness of geographic shape: comparison and evaluation of measures, Geografiska Annaler. Ser B Hum Geogr Wiley 67(1):53–67

    Article  Google Scholar 

  27. Martin L, March L (1972) Urban space and structures. Cambridge University Press, Cambridge, p 282

    Google Scholar 

  28. Meinel G, Hecht R, Herold H., Schiller G (2008) Automatische Ableitung von stadtstrukturellen Grundlagendaten und Integration in einem Geographischen Informationssystem. Technical Report 134, Bundesamt für Bauwesen und Raumordnung, Bonn

  29. Mies van der Rohe L (1924) The industrialization of building methods. G: Zeitschrift für elementare Gestaltung, 3, June 1924

  30. Moriconi-Ebrard F, Perez J (2016) Macro-structure urbaines et potentiel de développement en Chine. Institut e-Geopolis, rapport Chinapolis, p 76

  31. OECD (2013) Vers une croissance plus inclusive de la métropole Aix-Marseille: Une perspective internationale. OECD report, p 221

  32. Okabe A, Sugihara K (2012) Spatial analysis along networks: statistical and computational methods. Wiley, Hoboken

    Book  Google Scholar 

  33. Popham P (1985) Tokyo: the city at the end of the world. Tokyo: Kodansha International

    Google Scholar 

  34. Reffat R (2008) Investigating patterns of contemporary architecture using data mining techniques. In: 26th eCAADe proceedings, pp 601–608

  35. Reibel M (2014) Classification approaches in neighborhood research: introduction and review. Urban Geogr 32:305–316

    Article  Google Scholar 

  36. Reibel M, Regelson M (2007) Quantifying neighborhood racial and ethnic transition clusters in multiethnic cities. Urban Geogr 28:361–376

    Article  Google Scholar 

  37. Rissanen J (2007) Information and complexity in statistical modeling. Springer, Heidelberg

    Book  Google Scholar 

  38. Roncayolo M (1996) Les grammaires d’une ville. Essai sur la genèse des structures urbaines à Marseille. Editions de l’Ecole des Hautes Etudes en Sciences Sociales, Paris

  39. Royall RA, Wortmann T (2015) Finding the state space of urban regeneration: modeling gentrification as a probabilistic process using k-means clustering and Markov models, CUPUM 2015 Proceedings, Paper 275

  40. Russell SJ, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Prentice Hall, Upper Saddle River, p 1080

    Google Scholar 

  41. Ruz GA, Pham DT (2009) Building Bayesian network classifiers through a Bayesian complexity monitoring system. Proc IMechE 223(C3):743–755

    Google Scholar 

  42. Sassen S (2005) The global city: introducing a concept. Brown J World Aff 11(2):27–43

    Google Scholar 

  43. Scheer BC (2015) The epistemology of urban morphology. Urban Morphol 19(2):117–134

    Google Scholar 

  44. Schirmer P, Axhausen K (2015) A multiscale classification of urban morphology. J Transp Land Use 9(1):101–130

    Google Scholar 

  45. Serra M, Lopes Gil JA, Pinho P (2013) Unsupervised classification of evolving metropolitan street patterns. In: Proceedings of ninth international space syntax symposium, p 46

  46. Shelton B (2012) Learning from the Japanese city: west meets east in urban design. Routledge, Taylor & Francis, p 224

    Book  Google Scholar 

  47. Shoultz G, Givens J, Drane W (2007) Urban form, heart disease, and geography: a case study in composite index formation and bayesian spatial modeling. Popul Res Policy Rev 26(5–6):661–685

    Article  Google Scholar 

  48. Sokmenoglu A, Cagdas G, Sariyildiz S (2011) Application of data mining in micro-scale urban feature analysis. Proc GeoComput 2011:154–160

    Google Scholar 

  49. Son JS, Thill JC (2018) Is your city economic, cultural, or political? Recognition of city image based on multidimensional scaling of quantified web pages. In: Thill JC (ed) Spatial analysis and location modeling in urban and regional systems. Springer, New York, pp 63–95

    Chapter  Google Scholar 

  50. Sorensen A (2002) The making of urban Japan: cities and planning from Edo to the twenty-first century. Routledge, Abingdon, p 386

    Google Scholar 

  51. Steadman P (2014) Building types and built forms. Troubador Publishing Ltd, Leicester, p 420

    Google Scholar 

  52. Steadman P (2016) Research in architecture and urban studies at Cambridge in the 1960s and 1970s: what really happened. J Archit 21(2):291–306

    Article  Google Scholar 

  53. Steadman P, Bruhns HR, Holtier S, Gakovic B (2000) A classification of built forms. Environ Plan B Plan Des 27:73–91

    Article  Google Scholar 

  54. Vialard A (2013) A typology of block-faces. PhD Dissertation, Georgia Institute of Technology, USA. https://smartech.gatech.edu/handle/1853/52182

  55. Yamada I, Thill JC (2010) Local indicators of network-constrained clusters in spatial patterns represented by a link attribute. Ann Assoc Am Geogr 100(2):269–285

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out thanks to a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS). This study is supported by Joint Research Program no. 774 at CSIS, UTokyo (Zmap TOWN II 2013/14 Shapefile Osaka prefecture).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joan Perez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez, J., Fusco, G., Araldi, A. et al. Identifying building typologies and their spatial patterns in the metropolitan areas of Marseille and Osaka. Asia-Pac J Reg Sci 4, 193–217 (2020). https://doi.org/10.1007/s41685-019-00127-6

Download citation

Keywords

  • Building
  • Clustering
  • Typology
  • Geoprocessing
  • Japan
  • France
  • Osaka
  • Marseille