Skip to main content
Log in

Semiconductor-based thermal wave crystals

  • Short Communication
  • Published:
ISSS Journal of Micro and Smart Systems Aims and scope Submit manuscript

Abstract

One-dimensional phononic crystals made of silicon (Si) and germanium (Ge), both of which are materials commonly used in semiconductor devices, are shown to be effective in inducing bandgaps in the dispersion of heat flow at the nanoscale. Numerical approaches are used to understand the dispersion and propagation of thermal waves in Si–Ge phononic crystals. The results show for the first time how nanostructuring could yield band gaps in the dispersion of thermal phonons in the GHz range. We arrive at conditions that can yield bandgaps as high as 40 GHz; this is a bandgap that exceeds the value reported thus far. Variations in the unit cell dimensions are studied to understand the corresponding evolution in the bandgap frequencies. The control of heat using such proposed media holds promise for better heat management solutions for modern electronic devices, nanoscale sensing as well as for novel applications including the development of thermal diodes and thermal cloaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Amireddy KK, Balasubramaniam K, Rajagopal P (2017) Deep subwavelength ultrasonic imaging using optimized holey structured metamaterials. Sci Rep 7:1–8

    Article  Google Scholar 

  • Amireddy KK, Balasubramaniam K, Rajagopal P (2018) Porous metamaterials for deep sub-wavelength ultrasonic imaging. Appl Phys Lett 113:124102

    Article  Google Scholar 

  • Arunkumar A, Bolotin E, Cho B, Milic U, Ebrahimi E, Villa O, Jaleel A, Wu CJ, Nellans D (2017) MCM-GPU: multi-chip-module GPUs for continued performance scalability. ACM SIGARCH Comput Archit News 45:320–332

    Article  Google Scholar 

  • Available online at: https://periodictable.com/Elements/014/data.html. Last accessed 5 Jan 2020

  • Available online at: https://periodictable.com/Elements/032/data.html. Last Accessed 5 Jan 2020

  • Chen AL, Li ZY, Ma TX, Li XS, Wang YS (2018) Heat reduction by thermal wave crystals. Int J Heat Mass Transf 121:215–222

    Article  Google Scholar 

  • Chester M (1963) Second sound in solids physics. Phys Rev 132:2013–2015

    Article  Google Scholar 

  • Colombi A, Roux P, Guenneau S, Gueguen P, Craster RV (2015) Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci Rep 6:19238

    Article  Google Scholar 

  • Cook BS, Revier DL (2019) Texas Instruments Incorporated (2019) Patent Application Publication ( 10 ) Pub . No.: US 2019 / 0094203 A1.1

  • Donnelly JR (2010) The two-fluid theory and second sound in liquid helium. Phys Today 62:34–39

    Article  Google Scholar 

  • Feng T (2013) Accurate prediciton of spectral phonon relaxation time and thermal conductivity of intrinsic and perturbed materials. Purdue University, Purdue

    Google Scholar 

  • Glass DE, Özişik MN, McRae DS, Vick B (1986) Hyperbolic heat conduction with temperature-dependent thermal conductivity. J Appl Phys 59:1861–1865

    Article  Google Scholar 

  • Hannemann R (2003) Thermal control of electronics. Perspect Prospect 1–6.

  • Henry AS, Chen G (2008) Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J Comput Theor Nanosci 5:1–6

    Article  Google Scholar 

  • Heremans JP, Dresselhaus MS, Bell LE, Morelli DT (2013) When thermoelectrics reached the nanoscale. Nat Nanotechnol 8:471–473

    Article  Google Scholar 

  • Ho JC, Yerushalmi R, Jacobson ZA, Fan Z, Alley RL, Javey A (2008) Controlled nanoscale doping of semiconductors via molecular monolayers. Nat Mater 7:62–67

    Article  Google Scholar 

  • Huberman S, Duncan RA, Chen K, Song B, Chiloyan V, Ding Z, Maznev AA, Chen G, Nelson KA (2019) Observation of second sound in graphite at temperatures above 100 K. Science 364:375–379

    Article  Google Scholar 

  • Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66:1–38

    Google Scholar 

  • https://spectrum.ieee.org/tech-talk/semiconductors/processors/intel-shows-off-chip-packaging-powers(2019) Intel Foveros Interconnect.

  • Kothari K, Malhotra A, Maldovan M (2019) Cross-plane heat conduction in III–V semiconductor superlattices. J Phys Condens Matter 31:345301

    Article  Google Scholar 

  • Kuchibhatla SAR, Rajagopal P (2019) A transformation elasticity based device for wavefront manipulation. NDT E Int 102:304–310

    Article  Google Scholar 

  • Kumar V, Mitra M (2012) Vibration characteristics of periodically supported beam: application to railway track. In: 3rd ACMFMS International Conference

  • Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Phys Rev Lett 71:2022

    Article  Google Scholar 

  • Li L (2001) MATLAB user manual. The MathWorks, Natick

    Google Scholar 

  • Lin KH, Strachan A (2013) Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths. Phys Rev B Condens Matter Mater Phys 87:1–9

    Google Scholar 

  • Liu Z, Mao J, Liu TH, Chen G, Ren Z (2018) Nano-microstructural control of phonon engineering for thermoelectric energy harvesting. MRS Bull 43:181–186

    Article  Google Scholar 

  • Maldovan M (2013a) Sound and heat revolutions in phononics. Nature 503:209–217

    Article  Google Scholar 

  • Maldovan M (2013b) Narrow low-frequency spectrum and heat management by thermocrystals. Phys Rev Lett 110:1–5

    Article  Google Scholar 

  • Maldovan M (2015) Phonon wave interference and thermal bandgap materials. Nat Mater 14:667–674

    Article  Google Scholar 

  • Manjunath CT, Rajagopal P (2019) Lensing in the ultrasonic domain using negative refraction induced by material contrast. Sci Rep 9:1–8

    Article  Google Scholar 

  • Marciak-Kozłowska J (1994) Heat conduction in mesoscopic semiconductor structures. J Phys Chem Solids 55:721–726

    Article  Google Scholar 

  • Mingo N, Hauser D, Kobayashi NP, Plissonnier M, Shakouri A (2009) “Nanoparticle-in-alloy” approach to efficient thermoelectrics: silicides in SiGe. Nano Lett 9:711–715

    Article  Google Scholar 

  • Mohammadi S, Eftekhar AA, Khelif A, Moubchir H, Westafer R, Hunt WD, Adibi A (2007) Complete phononic bandgaps and bandgap maps in two-dimensional silicon phononic crystal plates. Electron Lett 43:898

    Article  Google Scholar 

  • Narayanamurti V, Dynes RC (1972) Observation of second sound in bismuth. Phys Rev Lett 28:1461–1465

    Article  Google Scholar 

  • Nasri F, Ben Aissa MF, Belmabrouk H (2015) Microscale thermal conduction based on Cattaneo–Vernotte model in silicon on insulator and Double Gate MOSFETs. Appl Therm Eng 76:206–211

    Article  Google Scholar 

  • Pohl DW, Irniger V (1976) Observation of second sound in NaF by means of light scattering. Phys Rev Lett 36:480–483

    Article  Google Scholar 

  • Sigalas M, Economou EN (1993) Band structure of elastic waves in two dimensional systems. Solid State Commun 86:141–143

    Article  Google Scholar 

  • Slack GA (1964) Thermal conductivity of Si and Ge. Phys Rev 134:10–13

    Article  Google Scholar 

  • Syed Akbar Ali MS, Amireddy KK, Balasubramaniam K, Rajagopal P (2019) Characterization of deep sub-wavelength sized horizontal cracks using holey-structured metamaterials. Trans Indian Inst Met 72:2917–2921

    Article  Google Scholar 

  • Tzou DY (2014) Macro to microscale heat transfer. Wiley, New York

    Book  Google Scholar 

  • Walker EL, Reyes-Contreras D, Jin Y, Neogi A (2019) Tunable hybrid phononic crystal lens using thermo-acoustic polymers. ACS Omega 4:16585–16590

    Article  Google Scholar 

  • Zhang L, Zhang X, Peng S (2018) Wave propagation model of heat conduction and group speed. Contin Mech Thermodyn 30:879–887

    Article  MathSciNet  Google Scholar 

  • Zhou W, Wang Z, Dong L, Sui X, Chen Q (2015) Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Compos Part A Appl Sci Manuf 79:183–191

    Article  Google Scholar 

  • Zhou X, Chen J, Li Y, Sun Y, Xing Y (2018) Thermal tuning on band gaps of 2D phononic crystals considering adhesive layers. J Phys D Appl Phys 51:075105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhu Rajagopal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The Catteneo–Vernotte (CV) heat conduction model in 1D can be written as

$$ q + \tau_{{\text{q}}} \frac{\partial q}{{\partial t}} = - \kappa \frac{\partial T}{{\partial x}}, $$
(6)

where \(q\) is the heat flux, \(T\) is the temperature,\(\tau_{{\text{q}}}\) is the Phonon relaxation time, \(\kappa\) is the thermal conductivity.

The energy conservation equation with no internal heat generation is given by

$$ \frac{\partial q}{{\partial x}} = - \rho c_{{\text{p}}} \frac{\partial T}{{\partial t}}, $$
(7)

where \(\rho\) is the mass density, \(c_{p}\) is the specific heat.

Using Eqs. 6 and 7, we get the hyperbolic heat wave conduction equation for 1D, which is

$$ \frac{1}{{\tau_{{\text{q}}} }}\frac{\partial T}{{\partial t}} + \frac{{\partial^{2} T}}{{\partial t^{2} }} = \frac{\kappa }{{\rho c_{{\text{p}}} \tau_{{\text{q}}} }}\frac{{\partial^{2} T}}{{\partial x^{2} }}. $$
(8)

The propagation velocity (\(C_{{{\text{CV}}}}\)) of this thermal wave is given by

$$ C_{{{\text{CV}}}} = \sqrt {\frac{\kappa }{{\rho c_{{\text{p}}} \tau_{{\text{q}}} }}} . $$
(9)

A periodically layered 1D TWC structure is shown in Fig. 

Fig. 7
figure 7

Schematic of 1D periodic bilayer TWC

7. Each unit cell of thickness l consists of two layers A and B of thickness lA and lB, respectively. All the material properties of each layer are distinguished by subscript A and B while the left end and right end of the unit cell are represented by subscript L and R, respectively. The interface between the A and B layer is designated using the subscript AB. The superscript j represents the jth unit cell. The coordinate (x, y) are shown in Fig. 7.

$$ l = l_{{\text{A}}} + l_{{\text{B}}} ;x_{{\text{L}}}^{{\text{j}}} = jl;x_{{{\text{AB}}}}^{{\text{j}}} = jl + l_{{\text{A}}} ;x_{{\text{R}}}^{j} = \left( {j + 1} \right)l = x_{{\text{L}}}^{j + 1} . $$
(10)

Considering a 1D time-harmonic thermal wave propagating in the 1D periodic structure with angular frequency ω, the temperature and heat flux fields can be written as

$$ \left\{ {T\left( {x,t} \right),q(x,t)} \right\} = \left\{ {\mathop T\limits^{ \wedge } \left( x \right),\mathop q\limits^{ \wedge } (x)} \right\}e^{ - i\omega t} , $$
(11)

with \(\mathop T\limits^{ \wedge } \left( x \right)\) satisfying

$$ \mathop {T\prime \prime }\limits^{ \wedge } \left( x \right) + \frac{{\omega^{2} + \frac{i\omega }{{\tau_{q} }}}}{{C_{CV} }}\mathop T\limits^{ \wedge } \left( x \right) = 0, $$
(12)

where \(i = \sqrt { - 1}\).

The general solution of Eq. 12 is

$$ \mathop T\limits^{ \wedge } \left( x \right) = A_{1} e^{i\gamma x} + A_{2} e^{ - i\gamma x} , $$
(13)

where A1 and A2 are unknown coefficients, and

$$ \gamma = \sqrt {\frac{{\omega^{2} + \frac{i\omega }{{\tau_{{\text{q}}} }}}}{{C_{{{\text{CV}}}} }}} , $$
(14)

of which real part denotes propagating thermal wave while the imaginary part characterizes attenuation.

Using Eq. 7, we get

$$ q(x) = - A_{1} \frac{i\kappa \gamma }{{1 - i\omega \tau_{q} }}e^{i\gamma x} + A_{2} \frac{i\kappa \gamma }{{1 - i\omega \tau_{q} }}e^{ - i\gamma x} . $$
(15)

Introducing state vector,

$$ S(x) = \left\{ {\mathop T\limits^{ \wedge } \left( x \right),\mathop q\limits^{ \wedge } (x)} \right\}^{T} = M(x)\left\{ {A_{1} ,A_{2} } \right\}^{T} , $$
(16)

where

$$ M(x) = \left( {\begin{array}{*{20}c} 1 & 1 \\ { - \frac{i\kappa \gamma }{{1 - i\omega \tau_{q} }}} & {\frac{i\kappa \gamma }{{1 - i\omega \tau_{q} }}} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {e^{i\gamma x} } & 0 \\ 0 & {e^{ - i\gamma x} } \\ \end{array} } \right). $$
(17)

The above solution is applicable for both layers A and B and is represented by \(S_{{\text{A}}}^{j} (x) = M_{{\text{A}}}^{j} (x)\left\{ {A_{1} ,A_{2} } \right\}^{T}\)(with \(x_{L}^{j} < x < x_{{{\text{AB}}}}^{j}\)) in layer A and \(S_{{\text{B}}}^{j} (x) = M_{{\text{B}}}^{j} (x)\left\{ {B_{1} ,B_{2} } \right\}^{T}\) (with \(x_{{{\text{AB}}}}^{j} < x < x_{{\text{R}}}^{j}\)) in layer B.

At the boundaries of layer A and B, state vectors can be written as

$$ \begin{gathered} S_{{{\text{AL}}}}^{j} = M_{{\text{A}}}^{j} (x_{L}^{j} )\left\{ {A_{1} ,A_{2} } \right\}^{T} ;\quad S_{{{\text{AR}}}}^{j} = M_{{\text{A}}}^{j} (x_{{{\text{AB}}}}^{j} )\left\{ {A_{1} ,A_{2} } \right\}^{T} \hfill \\ S_{{{\text{BL}}}}^{j} = M_{{\text{B}}}^{j} (x_{{{\text{AB}}}}^{j} )\left\{ {B_{1} ,B_{2} } \right\}^{T} ;\quad S_{{{\text{BR}}}}^{j} = M_{{\text{B}}}^{j} (x_{{\text{R}}}^{j} )\left\{ {B_{1} ,B_{2} } \right\}^{T} \hfill \\ \end{gathered} $$
(18)

Eliminating \(\left\{ {A_{1} ,A_{2} } \right\}^{T}\) and \(\left\{ {B_{1} ,B_{2} } \right\}^{T}\), we get

$$ S_{{{\text{AR}}}}^{j} = M_{{{\text{AR}}}}^{j} \left( {M_{{{\text{AL}}}}^{j} } \right)^{ - 1} S_{{{\text{AL}}}}^{j} ;\quad S_{{{\text{BR}}}}^{j} = M_{{{\text{BR}}}}^{j} \left( {M_{{{\text{BL}}}}^{j} } \right)^{ - 1} S_{{{\text{BL}}}}^{j} $$
(19)

As temperature and heat flux are continuous at the interface between two adjacent sub-layers, we get

$$ S_{{{\text{AR}}}}^{j} = S_{{{\text{BL}}}}^{j} ;\quad S_{{{\text{BR}}}}^{j} = S_{{{\text{AL}}}}^{j + 1} . $$
(20)

From Eq. 19 and 20, we get

$$ \begin{gathered} S_{{{\text{AL}}}}^{j + 1} = M_{{{\text{BR}}}}^{j} \left( {M_{{{\text{BL}}}}^{j} } \right)^{ - 1} M_{{{\text{AR}}}}^{j} \left( {M_{{{\text{AL}}}}^{j} } \right)^{ - 1} S_{{{\text{AL}}}}^{j} , \hfill \\ S_{{{\text{AL}}}}^{j + 1} = M_{{{\text{Transfer}}}} S_{{{\text{AL}}}}^{j} , \hfill \\ \end{gathered} $$
(21)

where \(M_{{{\text{Transfer}}}} = M_{{{\text{BR}}}}^{j} \left( {M_{{{\text{BL}}}}^{j} } \right)^{ - 1} M_{{{\text{AR}}}}^{j} \left( {M_{{{\text{AL}}}}^{j} } \right)^{ - 1}\).

Using Bloch theorem, for a wave propagating through a periodic structure

$$ S_{{{\text{AL}}}}^{j + 1} = e^{ikl} S_{{{\text{AL}}}}^{j} . $$
(22)

here k is complex Bloch wavenumber and \(k = k_{{\text{Re}}} + k_{{{\text{im}}}}\) (\(k_{{\text{Re}}}\) being the real part and \(k_{{{\text{im}}}}\) being the imaginary part).

Using Eqs. 21 and 22, we get

$$ M_{{{\text{Transfer}}}} S_{{{\text{AL}}}}^{j} = e^{ikl} S_{{{\text{AL}}}}^{j} , $$
(23)

or

$$ \left| {M_{{{\text{Transfer}}}} - e^{ikl} I} \right| = 0. $$
(24)

Using the detailed expression of MTransfer in Eq. 24, we obtain the eigenvalue equation

$$ \cosh \left( {ikl} \right) = \cosh (i\gamma_{{\text{A}}} I_{{\text{A}}} )\cosh (i\gamma_{{\text{B}}} I_{{\text{B}}} ) + \frac{1}{2}\left( {\frac{{\eta_{{\text{A}}} \gamma_{{\text{A}}} }}{{\eta_{{\text{B}}} \gamma_{{\text{B}}} }} + \frac{{\eta_{{\text{B}}} \gamma_{{\text{B}}} }}{{\eta_{{\text{A}}} \gamma_{{\text{A}}} }}} \right)\sinh (i\gamma_{{\text{A}}} I_{{\text{A}}} )\sinh (i\gamma_{{\text{B}}} I_{{\text{B}}} ), $$
(25)

where \(\eta_{{\text{A}}} = \frac{{\kappa_{{\text{A}}} }}{{\left( {1 - i\omega \tau_{{{\text{qA}}}} } \right)}}\) and \(\eta_{{\text{B}}} = \frac{{\kappa_{{\text{B}}} }}{{\left( {1 - i\omega \tau_{{{\text{qB}}}} } \right)}}\).

Solving Eq. 25, dispersion curves (ω vs k) for the 1D periodic TWC are obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zul Karnain, A.A., Kuchibhatla, S.A.R., Thomas, T. et al. Semiconductor-based thermal wave crystals. ISSS J Micro Smart Syst 9, 181–189 (2020). https://doi.org/10.1007/s41683-020-00061-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41683-020-00061-2

Keywords

Navigation