Ultrasonic Lamb wave sensitivity of P(VDF–TrFE) thin films

  • Vivek T. Rathod
  • Jayanth K. Swamy
  • Anjana Jain
  • D. Roy Mahapatra
Original Paper


This paper presents a study of ultrasonic guided wave sensing performance of poly (vinylidene fluoride–trifluoroethylene) P(VDF–TrFE) thin film sensors. P(VDF–TrFE) thin films show sensitivity to ultrasonic Lamb waves modes similar to conventional PZT wafers. We present a novel guided wave technique to estimate the piezoelectric coefficient e31 of a bonded thin film in situ over ultrasonic frequency band. The technique is very simple that involves the use of the response of thin film and a guided wave propagation model to determine the piezoelectric coefficient at room temperature of 24 °C. The P(VDF–TrFE) thin films show an average e31 values of around 0.0906 C/m2 at various frequencies (60–400 kHz). At various strain levels (0.01–0.02 με) these films show a constant e31 of 0.0972 C/m2. The proposed technique is capable of characterizing the thin film sensors in a non-destructive way and in situ, which helps in their calibration procedure. The study also provides an important insight towards optimized frequency range and sensitivity of newly developed P(VDF–TrFE) thin film for ultrasonic applications.


P(VDF–TrFE) Ultrasonic Piezoelectric Lamb wave Structural health monitoring Thin film sensor 


  1. Ali R, Mahapatra DR, Gopalakrishnan S (2005) Constrained piezoelectric thin film for sensing of subsurface cracks. Smart Mater Struct 14:376. CrossRefGoogle Scholar
  2. Ali R, Mahapatra DR, Gopalakrishnan S (2008a) Electrostatic measures for a piezoelectric thin film with an embedded crack in the substrate: I. Mode I. Smart Mater Struct 17:025037. CrossRefGoogle Scholar
  3. Ali R, Mahapatra DR, Gopalakrishnan S (2008b) Electrostatic measures for a piezoelectric thin film with an embedded crack in the substrate: II. Mode II. Smart Mater Struct 17:025038. CrossRefGoogle Scholar
  4. Augustine R, Sarry F, Kalarikkal N, Thomas S, Badie L, Rouxel D (2016) Surface acoustic wave device with reduced insertion loss by electrospinning P(VDF–TrFE)/ZnO nanocomposites. Nano-Micro Lett 8:282–290. CrossRefGoogle Scholar
  5. Bellan F, Bulletti A, Capineri L, Masotti L, Yaralioglu GG, Degertekin FL, Khuri-Yakub BT, Guasti F, Rosi E (2005) A new design and manufacturing process for embedded Lamb waves interdigital transducers based on piezopolymer film. Sens Actuators A 123:379–387. CrossRefGoogle Scholar
  6. Brown LF (2000) Design considerations for piezoelectric polymer ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1377–1396. CrossRefGoogle Scholar
  7. Chakraborty N, Rathod VT, Mahapatra DR, Gopalakrishnan S (2012) Guided wave based detection of damage in honeycomb core sandwich structures. NDT&E Int 49:27–33. CrossRefGoogle Scholar
  8. Chang C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731. CrossRefGoogle Scholar
  9. Christman JA, Woolcott RR Jr, Kingon AI, Nemanich RJ (1998) Piezoelectric measurements with atomic force microscopy. Appl Phys Lett 73:3851–3853. CrossRefGoogle Scholar
  10. Cottinet P-J, Lallart M, Guyomar D, Guiffard B, Lebrun L, Sebald G, Putson C (2011) Analysis of AC–DC conversion for energy harvesting using an electrostrictive polymer P(VDF–TrFE–CFE). IEEE Trans Ultrason Ferroelectr Freq Control 58:30–42. CrossRefGoogle Scholar
  11. Damjanovic D (1997) Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramcs. J Appl Phys 82:1788–1797. CrossRefGoogle Scholar
  12. Ducrot PH, Dufour I, Ayela C (2016) Optimization of PVDF–TrFE processing conditions for the fabrication of organic MEMS resonators. Sci Rep. Google Scholar
  13. Foster FS, Harasiewicz KA, Sherar MD (2000) A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1363–1371. CrossRefGoogle Scholar
  14. Fukada E (2000) History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Control 47:1277–1290. CrossRefGoogle Scholar
  15. Giridhara G, Rathod VT, Naik S, Mahapatra DR, Gopalakrishnan S (2010) Rapid localization of damage using a circular sensor array and Lamb wave based triangulation. Mech Syst Sig Process 24:2929–2946. CrossRefGoogle Scholar
  16. Gopalakrishnan S, Chakraborty A, Mahapatra DR (2008) Spectral finite element method: wave propagation diagnostics and control in anisotropic and inhomogeneous structures. Springer, London, pp 51–52zbMATHGoogle Scholar
  17. Gottlieb EJ, Cannata JM, Hu C-H, Shung KK (2006) Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer. IEEE Trans Ultrason Ferroelectr Freq Control 53:1037–1045. CrossRefGoogle Scholar
  18. Harrison JS, Ounaies Z (2002) Piezoelectric polymers. In: Encyclopedia of polymer science and technology. Wiley, New York.
  19. Hay TR, Rose JL (2002) Flexible PVDF comb transducers for excitation of axisymmetric guided waves in pipe. Sens Actuators A 100:18–23. CrossRefGoogle Scholar
  20. Hillenbrand J, Sessler GM (2004) Quasistatic and dynamic piezoelectric coefficients of polymer foams and polymer film systems. IEEE Trans Dielectr Electr Insul 11:72–79. CrossRefGoogle Scholar
  21. Jain A, Kumar JS, Srikanth S, Rathod VT, Mahapatra DR (2013a) Sensitivity of polyvinylidene fluoride films to mechanical vibration modes and impact after optimizing stretching conditions. Polym Eng Sci 53:707–715. CrossRefGoogle Scholar
  22. Jain A, Kumar SJ, Mahapatra DR, Rathod VT (2013b) Development of P(VDF–TrFE) films and its quasi-static and dynamic strain response. Int J Eng Res Technol 2:2598–2605Google Scholar
  23. Jain A, Kumar JS, Mahapatra RD, Rathod VT (2013c) Development of poly (vinylidene fluoride-trifluoroethylene) films and its quasi-static and dynamic strain response. Res Rev Polym 4(3):104–112Google Scholar
  24. Keat CK, Leong KS, Tee LK (2017) An experimental investigation of piezoelectric P(VDF–TrFE) thick film on flexible substrate as energy harvester. Mater Sci Eng. Google Scholar
  25. Khan S, Tinku S, Lorenzelli L, Dahiya RS (2015) Flexible tactile sensors using screen-printed P(VDF–TrFE) and MWCNT/PDMS composites. IEEE Sens J 15:3146–3155. CrossRefGoogle Scholar
  26. Lancee CT, Souquet J, Ohigashi H, Bom N (1985) Ferro-electric ceramics versus polymer piezoelectric materials. Ultrasonics 23:138–142. CrossRefGoogle Scholar
  27. Lang SB, Muensit S (2006) Review of some lesser-known applications of piezoelectric and pyroelectric polymers. Appl Phys A 85:125–134. CrossRefGoogle Scholar
  28. Li X, Kan EC (2010) A wireless low-range pressure sensor based on P(VDF–TrFE) piezoelectric resonance. Sens Actuators A 163:457–463. CrossRefGoogle Scholar
  29. Li C, Wu P-M, Lee S, Gorton A, Schulz MJ, Ahn CH (2008) Flexible dome and bump shape piezoelectric tactile sensors using PVDF–TrFE copolymer. J Microelectromech Syst 17:334–341. CrossRefGoogle Scholar
  30. Liew WH, Mirshekarloo MS, Chen S, Yao K, Tay FEH (2015) Nanoconfinement induced crystal orientation and large piezoelectric coefficient in vertically aligned P(VDF–TrFE) nanotube array. Sci Rep 5(09790):1–7. Google Scholar
  31. Liu J-M, Pan B, Chan HLW, Zhu SN, Zhu YY, Liu ZG (2002) Piezoelectric coefficient measurement of piezoelectric thin films: an overview. Mater Chem Phys 75:12–18. CrossRefGoogle Scholar
  32. Lueng CM, Chan HLW, Surya C, Choy CL (2000) Piezoelectric coefficient of aluminum nitride and gallium nitride. J Appl Phys 88:5360–5363. CrossRefGoogle Scholar
  33. Mhalgi MV, Khakhar DV, Misra A (2007) Stretching induced phase transformations in melt extruded poly(vinylidene fluoride) cast films: effect of cast roll temperature and speed. Polym Eng Sci 47:1992–2004. CrossRefGoogle Scholar
  34. Monkhouse RSC, Wilcox PD, Cawley P (1997) Flexible interdigital PVDF transducers for the generation of Lamb waves in structures. Ultrasonics 35:489–498. CrossRefGoogle Scholar
  35. Monkhouse RSC, Wilcox PW, Lowe MJS, Dalton RP, Cawley P (2000) The rapid monitoring of structures using interdigital Lamb wave transducers. Smart Mater Struct 9:304. CrossRefGoogle Scholar
  36. Muralt P (2000) PZT thin films for microsensors and actuators: where do we stand? IEEE Trans Ultrason Ferroelectr Freq Control 47:903–915. CrossRefGoogle Scholar
  37. Ohigashi H (1976) Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method. J Appl Phys 47:949–955. CrossRefGoogle Scholar
  38. Or SW, Chan HLW, Choy CL (2000) PVDF–TrFE/copolymer acoustic emission sensors. Sens Actuators A 80:237–241. CrossRefGoogle Scholar
  39. Park G-T, Choi J-J, Ryu J, Fan H, Kim H-E (2002) Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method. Appl Phys Lett 80:4606–4608. CrossRefGoogle Scholar
  40. Park J-M, Kong J-W, Kim DS, Yoon D-J (2005) Nondestructive damage detection and interfacial evaluation of single-fibers/epoxy composites using PZT, PVDF and P(VDF–TrFE) copolymer sensors. Compos Sci Technol 65:241–256. CrossRefGoogle Scholar
  41. Payo I, Hale JM (2010) Dynamic characterization of piezoelectric paint sensors under biaxial strain. Sens Actuators A 163:150–158. CrossRefGoogle Scholar
  42. Raghavan A, Cesnik CES (2007) Review of guided-wave structural health monitoring. Shock Vib Digest 39:91–114. CrossRefGoogle Scholar
  43. Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23:033001. CrossRefGoogle Scholar
  44. Rathod VT, Jain A (2018) Ultrasonic guided wave sensitivity of piezopolymer films subjected to thermal exposure. ISSS J Micro Smart Syst (accepted). Google Scholar
  45. Rathod VT, Mahapatra DR (2011) Ultrasonic Lamb wave based monitoring of corrosion type of damage in plate using a circular array of piezo electric transducers. NDT&E Int 44:628–636. CrossRefGoogle Scholar
  46. Rathod VT, Mahapatra DR, Jain A, Gayathri A (2010) Characterization of a large area PVDF thin film for electro-mechanical and ultrasonic sensing applications. Sens Actuators A 163:164–171. CrossRefGoogle Scholar
  47. Rathod VT, Jeyaseelan AA, Dutta S, Roy Mahapatra D (2017a) Ultrasonic guided wave sensing characteristics of large area thin piezo coating. Smart Mater Struct. Google Scholar
  48. Rathod VT, Swamy JK, Jain A (2017b) Polymer and ceramic nanocomposites for aerospace applications. Appl Nanosci 7:519–548. CrossRefGoogle Scholar
  49. Robert M, Molingou G, Cannata KSJ, Shung KK (2004) Fabrication of focused poly(vinylidene fluoride–trifluoroethylene) P(VDF–TrFE) copolymer 40–50 MHz ultrasound transducers on curved surfaces. J Appl Phys 96:252–256. CrossRefGoogle Scholar
  50. Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press, Cambridge, pp 101–113Google Scholar
  51. Schellin R, Hess G, Kressman R, Wassmuth P (1998) Corona-poled piezoelectric polymer layers of P(VDF/TrFE) for micromachined silicon microphones. J Micromech Microeng 5:106–108. CrossRefGoogle Scholar
  52. Seminara L, Capurro M, Cirillo P, Cannata G, Valle M (2011) Electromechanical characterization of piezoelectric PVDF polymer films for tactile sensors in robotics applications. Sens Actuators A 169:49–58. CrossRefGoogle Scholar
  53. Sharma T, Je S-S, Gill B, Zhang JXJ (2012) Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application. Sens Actuators A 177:87–92. CrossRefGoogle Scholar
  54. Shepard JF Jr, Moses PJ, Trolier-McKinstry S (1998) The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films. Sens Actuators A 71:133–138. CrossRefGoogle Scholar
  55. Snis N, Edqvist E, Simu U, Johansson S (2008) Monolithic fabrication of multilayer P(VDF–TrFE) cantilevers. Sens Actuators A 144:314–320. CrossRefGoogle Scholar
  56. Soin N, Boyer D, Prashanthi K, Sharma S, Narasimulu AA, Luo J, Shah TH, Siores E, Thundat T (2015) Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem Commun 51:8257–8260. CrossRefGoogle Scholar
  57. Strashilov V, Alexieva G, Vincent B, Nguyen VS, Rouxel D (2015) Structural impact on piezoelectricity in PVDF and P(VDF–TrFE). Appl Phys A 118:1469–1477. CrossRefGoogle Scholar
  58. Takahashi S (2012) Properties and characteristics of P(VDF/TrFE) transducers manufactured by a solution casting method for use in the MHz-range ultrasound in air. Ultrasonics 52:422–426. CrossRefGoogle Scholar
  59. Vijayakumar RP, Khakhar DV, Misra A (2010) Studies on α to β phase transformations in mechanically deformed PVDF films. J Appl Polym Sci 117:3491–3497. Google Scholar
  60. Wagle S, Habib A, Melandsø F (2017) Ultrasonic measurements of surface defects on flexible circuits using high-frequency focused polymer transducers. Jpn J Appl Phys. Google Scholar
  61. Wang H, Zhang QM, Cross LE, Sykes AO (1993) Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene). J Appl Phys 74:3394–3398. CrossRefGoogle Scholar
  62. Wang X, Yang B, Liu J, Zhu Y, Yang C, He Q (2016) A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF–TrFE) nanofibers and PDMS/MWCNT for wearable devices. Sci Rep 6(36409):1–10. Google Scholar
  63. Xin Y, Sun H, Tian H, Guo C, Li X, Wang S, Wang C (2016) The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: a brief review. Ferroelectrics 502(1):28–42. CrossRefGoogle Scholar

Copyright information

© Institute of Smart Structures & Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India 2018

Authors and Affiliations

  • Vivek T. Rathod
    • 1
  • Jayanth K. Swamy
    • 2
  • Anjana Jain
    • 2
  • D. Roy Mahapatra
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Materials Science DivisionNational Aerospace LaboratoriesBangaloreIndia

Personalised recommendations