Skip to main content
Log in

Rapid and Sensitive Biosensing of Salmonella Using Mechanical Step Rotation and Gold@platinum Nanozymatic Amplification

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Inspired by ballpoint pen, an optical biosensor is developed for detection of Salmonella using a mechanical step rotator with a dropper to greatly simplify operation, a high gradient magnetic field with immune magnetic nanobeads to specifically separate bacteria, and immune gold@platinum nanozymes with a smartphone to sensitively detect bacteria. First, the preloaded bacterial sample is drawn by the dropper to react with the immune magnetic nanobeads through repeated squeezing and releasing of the dropper, and the rotator is successively rotated and the dropper is repeatedly squeezed and released to achieve mixing of the bacteria, magnetic nanobeads and gold@platinum nanozymes, followed by magnetic separation to remove the background. Then, the conjugates are effectively washed with skim milk and ultrapure water, and the substrate are rapidly catalyzed into the product. Finally, the blue product is photographed and analyzed using a smartphone to obtain the Salmonella concentration. This biosensor could detect Salmonella as low as 56 CFU/mL in ~ 25 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  1. WHO. Joint fao/who expert meeting on the pre- and post-harvest control of campylobacter spp. In poultry meat. 2023.

  2. Ding YF, Huang CX, Zhang YM, Wang J, Wang XH. Magnetic microbead enzyme-linked immunoassay based on phage encoded protein rbp 41-mediated for rapid and sensitive detection of salmonella in food matrices. Food Res Int. 2023;163: 112212.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou CY, Li WJ, Zhao Y, Gu K, Liao ZW, Guo BY, Huang ZR, Yang M, Wei HC, Ma P, Li C, Li H, Tang YZ, Lei CW, Wang HN. Sensitive detection of viable salmonella bacteria based on tertiary cascade signal amplification via splintr ligase ligation-pcr amplification-crispr/cas12a cleavage. Anal Chim Acta. 2023;1248:340885.

    Article  CAS  PubMed  Google Scholar 

  4. Gao D, Ma ZY, Jiang YY. Recent advances in microfluidic devices for foodborne pathogens detection. TrAC Trends Anal Chem. 2022;157:116788.

    Article  CAS  Google Scholar 

  5. Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. Environ Int. 2022;166:107357.

    Article  CAS  PubMed  Google Scholar 

  6. Beiki T, Najafpour-Darzi G, Mohammadi M, Shakeri M. Design of a novel electrochemical aptasensor based on molybdenum disulfide nanosheets for lysozyme detection. J Anal and Test. 2024;8(1):16–27.

    Article  Google Scholar 

  7. Tao KJ, Castleman MD, Tao S. Reagent-loaded annulus-shaped reactor on filter-paper with virtual colorimeter for onsite quick detection of chlorogenic acid. J Anal Test. 2022;7(1):25.

    Article  Google Scholar 

  8. Ventura-Aguilar RI, Bautista-Baños S, Mendoza-Acevedo S, Bosquez-Molina E. Nanomaterials for designing biosensors to detect fungi and bacteria related to food safety of agricultural products. Postharvest Biol Technol. 2023;195:112116.

    Article  CAS  Google Scholar 

  9. Wang J, Li HH, Li CB, Ding YF, Wang YS, Zhu WJ, Wang J, Shao YC, Pan H, Wang XH. Eis biosensor based on a novel myoviridae bacteriophage sep37 for rapid and specific detection of salmonella in food matrixes. Food Res Int. 2022;158:111479.

    Article  CAS  PubMed  Google Scholar 

  10. Beck F, Loessl M, Baeumner AJ. Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Mikrochim Acta. 2023;190(3):91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guan KY, Huang RT, Zhang L, Wang SM. A review on the advances of aptamer-based optical and electrochemical biosensors for rapid and sensitive detection of mycotoxins. Chin J Anal Lab. 2022;41(2):212–24.

    CAS  Google Scholar 

  12. Fernandez De Santaella J, Ren J, Vanella R, Nash MA. Enzyme cascade with horseradish peroxidase readout for high-throughput screening and engineering of human arginase-1. Anal Chem. 2023;95(18):7150.

    Article  CAS  PubMed  Google Scholar 

  13. Huang RL, Liu K, Yue CSY, Wang Y, Zeng ZL, Xiao L, Dong L, Ke RQ, Yang CY, Liu D. Chromogenic visualization of single rna molecules in situ with duplex capability by rolling circle amplification with alkaline phosphatase. Anal Chem. 2023;95(32):12161.

    Article  CAS  PubMed  Google Scholar 

  14. Wang MH, Wu PX, Yang S, Wu GL, Li N, Tan XF, Yang QL. Β-cyclodextrin-modified aubi metallic aerogels enable efficient peroxidase mimicking for colorimetric sensing of urease-positive pathogenic bacteria. Nano Res. 2023;16(7):9663.

    Article  CAS  Google Scholar 

  15. Chen JX, Guo ZT, Xin Y, Gu ZH, Zhang L, Guo X. Organic–inorganic hybrid nanoflowers: a comprehensive review of current trends, advances, and future perspectives. Coord Chem Rev. 2023;489:215191.

    Article  CAS  Google Scholar 

  16. Wei DL, Xiong DH, Zhu NF, Wang Y, Hu XL, Zhao BY, Zhou JH, Yin DQ, Zhang Z. Copper peroxide nanodots encapsulated in a metal-organic framework for self-supplying hydrogen peroxide and signal amplification of the dual-mode immunoassay. Anal Chem. 2022;94(38):12981.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang ZD, Wang DK, Liu C, Dong JG, Jiang MM, Mi X, Tan XY, Zhang YY. Penetration-then-growth enables label-free surface-enhanced raman spectroscopic discrimination of fibrotic cells and kidney tissues. Sens Actuators B: Chem. 2023;392: 134103.

    Article  CAS  Google Scholar 

  18. Chen G, Zhai RQ, Liu GY, Huang XD, Zhang KG, Xu XM, Li LY, Zhang YG, Wang J, Jin MJ, Xu DH, Abd El-Aty AM. A competitive assay based on dual-mode Au@Pt-DNA biosensors for on-site sensitive determination of carbendazim fungicide in agricultural products. Front Nutr. 2022;9: 820150.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Han DB, Li XM, Bian XT, Wang JM, Kong LS, Ding SJ, Yan YR. Localized surface plasmon-enhanced electrochemiluminescence biosensor for rapid, label-free, and single-step detection of broad-spectrum bacteria using urchin-like Au and Ag nanoparticles. Sens Actuators B: Chem. 2022;355: 131120.

    Article  CAS  Google Scholar 

  20. Sun FF, Yan CL, Jia Q, Wu W, Cao YD. A novel aptamer lateral flow strip for the rapid detection of gram-positive and gram-negative bacteria. J Anal Test. 2022;7(1):79.

    Article  Google Scholar 

  21. Jung T, Yun YR, Bae J, Yang S. Rapid bacteria-detection platform based on magnetophoretic concentration, dielectrophoretic separation, and impedimetric detection. Anal Chim Acta. 2021;1173: 338696.

    Article  CAS  PubMed  Google Scholar 

  22. Hou Y, Tang W, Qi WZ, Guo XJ, Lin JH. An ultrasensitive biosensor for fast detection of salmonella using 3d magnetic grid separation and urease catalysis. Biosens Bioelectron. 2020;157: 112160.

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Rong N, Xi XG, Wang MH, Huo X, Yuan J, Qi WZ, Li YB, Lin JH. Power-free colorimetric biosensing of foodborne bacteria in centrifugal tube. Biosens Bioelectron. 2023;220: 114905.

    Article  CAS  PubMed  Google Scholar 

  24. Bu SJ, Wang KY, Ju CJ, Wang CY, Li ZY, Hao Z, Shen MH, Wan JY. Point-of-care assay to detect foodborne pathogenic bacteria using a low-cost disposable medical infusion extension line as readout and MnO2 nanoflowers. Food Control. 2019;98:399.

    Article  Google Scholar 

  25. Lee KW, Yang EK, Oh Y, Park E, Jeong KY, Yoon HC. Immunogenicity monitoring cell chip incorporating finger-actuated microfluidic and colorimetric paper-based analytical functions. BioChip J. 2023;17:329.

    Article  CAS  Google Scholar 

  26. Liu X, Li M, Zheng JH, Zhang XL, Zeng JY, Liao YJ, Chen J, Yang J, Zheng XL, Hu N. Electrochemical detection of ascorbic acid in finger-actuated microfluidic chip. Micromachines. 2022;13(9):1479.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cai GP, Huang YX, Chen BL, Shen YM, Shi XL, Peng B, Mi SL, Huang JJ. Modular design of centrifugal microfluidic system and its application in nucleic acid screening. Talanta. 2023;259: 124486.

    Article  CAS  PubMed  Google Scholar 

  28. Liu SX, Hou YT, Li ZR, Yang CY, Liu GZ. μPads on centrifugal microfluidic discs for rapid sample-to-answer salivary diagnostics. ACS Sens. 2023;8:3250.

    Article  Google Scholar 

  29. Wang KY, Bu SJ, Ju CJ, Han Y, Ma CY, Liu WS, Li ZY, Li CT, Wan JY. Disposable syringe-based visual immunotest for pathogenic bacteria based on the catalase mimicking activity of platinum nanoparticle-concanavalin a hybrid nanoflowers. Mikrochim Acta. 2019;186(2):57.

    Article  PubMed  Google Scholar 

  30. Yoon T, Kim S, Kim JH, Park KS. A syringe-based and centrifugation-free DNA extraction procedure for the rapid detection of bacteria. Chemosensors. 2021;9(7):167.

    Article  CAS  Google Scholar 

  31. Gu RH, Duan YX, Li YX, Luo ZW. Fiber-optic-based biosensor as an innovative technology for point-of-care testing detection of foodborne pathogenic bacteria to defend food and agricultural product safety. J Agric Food Chem. 2023;71(29):10982.

    Article  CAS  PubMed  Google Scholar 

  32. Jia YX, Zhao SQ, Li DS, Yang JL, Yang L. Portable chemiluminescence optical fiber aptamer-based biosensors for analysis of multiple mycotoxins. Food Control. 2023;144: 109361.

    Article  CAS  Google Scholar 

  33. Wang ZY, Wang Y, Lin L, Wu T, Zhao ZZ, Ying BW, Chang LQ. A finger-driven disposable micro-platform based on isothermal amplification for the application of multiplexed and point-of-care diagnosis of tuberculosis. Biosens Bioelectron. 2022;195: 113663.

    Article  CAS  PubMed  Google Scholar 

  34. Cherkasov N, Baldwin S, Gibbons GJ, Isakov D. Monitoring chemistry in situ with a smart stirrer: a magnetic stirrer bar with an integrated process monitoring system. ACS Sens. 2020;5(8):2497.

    Article  CAS  PubMed  Google Scholar 

  35. Grau J, Benede JL, Chisvert A, Salvador A. A high-throughput magnetic-based pipette tip microextraction as an alternative to conventional pipette tip strategies: determination of testosterone in human saliva as a proof-of-concept. Anal Chim Acta. 2022;1221: 340117.

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Qi WZ, Wang MH, Jiang F, Ding Y, Xi XG, Liao M, Li YB, Lin JH. A pipette-adapted biosensor for salmonella detection. Biosens Bioelectron. 2022;218: 114765.

    Article  CAS  PubMed  Google Scholar 

  37. Haghighinia A, Movahedirad S. A tri-fluid tortuous microfluidic chip for green synthesis of nanoparticles and inactivation of a model gram-negative bacteria: intracellular components evaluation. J Flow Chem. 2022;12(3):337.

    Article  CAS  Google Scholar 

  38. Liu YJ, Jiang D, Wang SY, Cai GZ, Xue L, Li YB, Liao M, Lin JH. A microfluidic biosensor for rapid detection of salmonella typhimurium based on magnetic separation, enzymatic catalysis and electrochemical impedance analysis. Chin Chem Lett. 2022;33(6):3156.

    Article  CAS  Google Scholar 

  39. Xing GW, Zhang WF, Li N, Pu QS, Lin JM. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. Chin Chem Lett. 2022;33(4):1743.

    Article  CAS  Google Scholar 

  40. Lin XD, Wu HT, Zeng SY, Peng T, Zhang P, Wan XH, Lang YH, Zhang B, Jia YW, Shen R, Yin BF. A self-designed device integrated with a fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosens Bioelectron. 2023;230: 115283.

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, Xu A, Yuan J, Jiang F, Li MX, Qi WZ, Li YB, Lin JH. Hourglass-mimicking biosensor based on disposable centrifugal tube for bacterial detection in large-volume sample. Biosens Bioelectron. 2022;216: 114653.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng LY, Cai GZ, Qi WZ, Wang SY, Wang MH, Lin JH. Optical biosensor for rapid detection of salmonella typhimurium based on porous gold@platinum nanocatalysts and a 3D fluidic chip. ACS Sens. 2020;5(1):65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Pinduoduo-China Agricultural University Research Fund (PC2023B02021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhan Lin.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2720 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, L., Xu, A. et al. Rapid and Sensitive Biosensing of Salmonella Using Mechanical Step Rotation and Gold@platinum Nanozymatic Amplification. J. Anal. Test. (2024). https://doi.org/10.1007/s41664-024-00313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-024-00313-2

Keywords

Navigation