Skip to main content
Log in

Optimization of the Procedure for Gram Scale Synthesis of Silicon Rhodamine and its Application in Labeling BRD4 Kinase Inhibitor

  • Letter
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available from the corresponding authors Wei Ren, Sijin Yang and Zengjin Liu, upon reasonable request.

References

  1. Fu M, Xiao Y, Qian X, Zhao D, Xu Y. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom. Chem Commun (Camb). 2008;15:1780–2.

    Article  Google Scholar 

  2. Ahn SH, Thach D, Vaughn BA, Alford VM, Preston AN, Laughlin ST, Boros E. Linear desferrichrome-linked silicon-rhodamine antibody conjugate enables targeted multimodal imaging of HER2 in vitro and in vivo. Mol Pharm. 2019;16(3):1412–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kushida Y, Nagano T, Hanaoka K. Silicon-substituted xanthene dyes and their applications in bioimaging. Analyst. 2015;140(3):685–95.

    Article  CAS  PubMed  Google Scholar 

  4. Mao Z, Jiang H, Song X, Hu W, Liu Z. Development of a silicon-rhodamine based near-infrared emissive two-photon fluorescent probe for nitric oxide. Anal Chem. 2017;89(18):9620–4.

    Article  CAS  PubMed  Google Scholar 

  5. Frei MS, Hoess P, Lampe M, Nijmeijer B, Kueblbeck M, Ellenberg J, Wadepohl H, Ries J, Pitsch S, Reymond L, Johnsson K. Photoactivation of silicon rhodamines via a light-induced protonation. Nat Commun. 2019;10(1):4580.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang L, Frei MS, Salim A, Johnsson K. Small-molecule fluorescent probes for live-cell super-resolution microscopy. J Am Chem Soc. 2019;141(7):2770–81.

    Article  CAS  PubMed  Google Scholar 

  7. Chyan W, Raines RT. Enzyme-activated fluorogenic probes for live-cell and in vivo imaging. ACS Chem Biol. 2018;13(7):1810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lardon N, Wang L, Tschanz A, Hoess P, Tran M, D’Este E, Ries J, Johnsson K. Systematic tuning of rhodamine spirocyclization for super-resolution microscopy. J Am Chem Soc. 2021;143(36):14592–600.

    Article  CAS  PubMed  Google Scholar 

  9. Ortiz G, Liu P, Deal PE, Nensel AK, Martinez KN, Shamardani K, Adesnik H, Miller EW. A silicon-rhodamine chemical-genetic hybrid for far red voltage imaging from defined neurons in brain slice. RSC Chem Biol. 2021;2(6):1594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lukinavičius G, Reymond L, D’Este E, Masharina A, Göttfert F, Ta H, Güther A, Fournier M, Rizzo S, Waldmann H, Blaukopf C, Sommer C, Gerlich DW, Arndt HD, Hell SW, Johnsson K. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods. 2014;11(7):731–3.

    Article  PubMed  Google Scholar 

  11. Karch S, Broichhagen J, Schneider J, Böning D, Hartmann S, Schmid B, Tripal P, Palmisano R, Alzheimer C, Johnsson K, Huth T. A new fluorogenic small-molecule labeling tool for surface diffusion analysis and advanced fluorescence imaging of β-Site amyloid precursor protein-cleaving enzyme 1 based on silicone rhodamine: SiR-BACE1. J Med Chem. 2018;61(14):6121–39.

    Article  CAS  PubMed  Google Scholar 

  12. Lukinavičius G, Blaukopf C, Pershagen E, Schena A, Reymond L, Derivery E, Gonzalez-Gaitan M, D’Este E, Hell SW, Wolfram Gerlich D, Johnsson K. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat Commun. 2015;6:8497.

    Article  PubMed  Google Scholar 

  13. Brandes B, Hoenke S, Fischer L, Csuk R. Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur J Med Chem. 2020;185:111858.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu PJ, Yu ZZ, Lv YF, Zhao JL, Tong YY, You QD, Jiang ZY. Discovery of 3,5-Dimethyl-4-Sulfonyl-1H-Pyrrole-based myeloid cell leukemia 1 inhibitors with high affinity, selectivity, and oral bioavailability. J Med Chem. 2021;64(15):11330–53.

    Article  CAS  PubMed  Google Scholar 

  15. Butkevich AN. Modular synthetic approach to silicon-rhodamine homologues and analogues via bis-aryllanthanum reagents. Org Lett. 2021;23(7):2604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matthias J, Kanagasundaram T, Kopka K, Kramer CS. Synthesis of a dihalogenated pyridinyl silicon rhodamine for mitochondrial imaging by a halogen dance rearrangement. Beilstein J Org Chem. 2019;15:2333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grimm JB, Brown TA, Tkachuk AN, Lavis LD. General synthetic method for Si-fluoresceins and Si-rhodamines. ACS Cent Sci. 2017;3(9):975–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao Y, Qian XH. Substitution of oxygen with silicon: a big step forward for—fluorescent dyes in life science. Coord Chem Rev. 2020;423:213513.

    Article  CAS  Google Scholar 

  19. Wang B, Chai X, Zhu W, Wang T, Wu Q. A general approach to spirolactonized Si-rhodamines. Chem Commun (Camb). 2014;50(92):14374–7.

    Article  CAS  PubMed  Google Scholar 

  20. Gao J, Hou B, Zhu Q, Yang L, Jiang X, Zou Z, Li X, Xu T, Zheng M, Chen YH, Xu Z, Xu H, Yu H. Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy. Nat Commun. 2022;13(1):4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Majumder R, Mandal M. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. J Biomol Struct Dyn. 2022;40(2):696–711.

    Article  CAS  PubMed  Google Scholar 

  22. Jin Y, Fan J, Wang R, Wang X, Li N, You Q, Jiang Z. Ligation to scavenging strategy enables on-demand termination of targeted protein degradation. J Am Chem Soc. 2023;145(13):7218–29.

    Article  CAS  PubMed  Google Scholar 

  23. Dooley KE, Warburton A, McBride AA. Tandemly integrated HPV16 can form a BRD4-dependent super-enhancer-like element that drives transcription of viral oncogenes. Mbio. 2016;7(5):e01446-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Donati B, Lorenzini E, Ciarrocchi A. Brd4 and cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17(1):164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu Y, Wang Y, Diao P, Zhang W, Li J, Ge H, Song Y, Li Z, Wang D, Liu L, Jiang H, Cheng J. Therapeutic targeting of BRD4 in head neck squamous cell carcinoma. Theranostics. 2019;9(6):1777–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liao X, Qian X, Zhang Z, Tao Y, Li Z, Zhang Q, Liang H, Li X, Xie Y, Zhuo R, Chen Y, Jiang Y, Cao H, Niu J, Xue C, Ni J, Pan J, Cui D. ARV-825 demonstrates antitumor activity in gastric cancer via MYC-targets and G2M-checkpoint signaling pathways. Front Oncol. 2021;11:753119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu SY, Lee CF, Lai HT, Yu CT, Lee JE, Zuo H, Tsai SY, Tsai MJ, Ge K, Wan Y, Chiang CM. Opposing functions of BRD4 isoforms in breast cancer. Mol Cell. 2020;78(6):1114–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu J, Duan Z, Guo W, Zeng L, Wu Y, Chen Y, Tai F, Wang Y, Lin Y, Zhang Q, He Y, Deng J, Stewart RL, Wang C, Lin PC, Ghaffari S, Evers BM, Liu S, Zhou MM, Zhou BP, Shi J. Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nat Commun. 2018;9(1):5200.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, Macklin JJ, Normanno D, Singer RH, Lionnet T, Lavis LD. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods. 2015;12(3):244–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He S, Dong G, Li Y, Wu S, Wang W, Sheng C. Potent dual BET/HDAC inhibitors for efficient treatment of pancreatic cancer. Angew Chem Int Ed Engl. 2020;59(8):3028–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Sichuan Science and Technology Program ( 24NSFSC5985, 2022YFS0635), the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine (ZYYCXTD-C-202207), the Luzhou Science and Technology Program (2022-SYF-38, 2020-JYJ-51), university-level project of Southwest Medical University (2021ZKQN118), Joint project of Southwest Medical University and Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University (2020XYLH-016) and the Innovation Team of Sichuan Provincial Administration of Traditional Chinese Medicine (2022C007). Thanks for the experiment conditions provided by Luzhou Key Laboratory for Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases with Integrated Traditional Chinese and Western Medicine and the High-resolution Mass Spectrometry Testing Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengjin Liu, Sijin Yang or Wei Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7087 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Bi, T., Wang, R. et al. Optimization of the Procedure for Gram Scale Synthesis of Silicon Rhodamine and its Application in Labeling BRD4 Kinase Inhibitor. J. Anal. Test. (2024). https://doi.org/10.1007/s41664-024-00309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-024-00309-y

Navigation