Skip to main content
Log in

Paper Analytical Device for the Colourimetric Detection of Alkaline Phosphatase in Serum and Saliva

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

A paper analytical device (PAD) was developed for the colourimetric estimation of alkaline phosphatase (ALP). ALP catalyzes the hydrolysis of disodium phenyl phosphate (DSPP) to phenol, which then undergoes oxidative coupling with 4-aminoantipyrine (4-AAP) producing a reddish brown-coloured quinone imine. The colourimetric reaction tested in solution has been translated onto a PAD for the point of care (PoC) testing of ALP. A uniform colour was obtained in 25 min with the introduction of ALP onto the reagent drop cast paper device. The images obtained by scanning the PAD were processed using ImageJ software. The colour intensity obtained by image processing was proportional to the concentration of ALP present in the sample. ALP in serum and saliva samples were tested using the PAD in the range of 0 to 528 U/L and 0 to 187 U/L, respectively. The interference studies revealed that the PAD was selective to ALP in the presence of other biomolecules. The PAD exhibited a limit of detection (LOD) of 3.3 U/L and a sensitivity of 48.36 a.u/Log(U/L) for serum ALP and LOD of 1.69 U/L and a sensitivity of 28.5 a.u/Log (U/L) for salivary ALP. The PAD showed good agreement with the clinical methods for real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Shaban SM, Moon BS, Pyun DG, Kim DH. A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles. Colloids Surf B Biointerfaces. 2021;205:111835.

    Article  CAS  PubMed  Google Scholar 

  2. Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview. Indian J Clin Biochem. 2014;29(3):269–78.

    Article  CAS  PubMed  Google Scholar 

  3. Liu SG, Han L, Li N, Xiao N, Ju YJ, Li NB, Luo HQ. A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity: via destroying oxidase-like CoOOH nanoflakes. J Mater Chem B. 2018;6(18):2843–50.

    Article  CAS  PubMed  Google Scholar 

  4. Luo L, Liu J, Liu Y, Chen H, Zhang Y, Liu M, Yao S. In situ formation of fluorescence species for the detection of alkaline phosphatase and organophosphorus pesticide via the ascorbate oxidase mimetic activity of AgPd bimetallic nanoflowers. Food Chem. 2024;430:137062.

    Article  CAS  PubMed  Google Scholar 

  5. Yang Q, Wang X, Peng H, Arabi M, Li J, Xiong H, Choo J, Chen L. Ratiometric fluorescence and colorimetry dual-mode assay based on manganese dioxide nanosheets for visual detection of alkaline phosphatase activity. Sens Actuators B Chem. 2020;302:127176.

    Article  CAS  Google Scholar 

  6. Fan S, Jiang X, Yang M, Wang X. Sensitive colorimetric assay for the determination of alkaline phosphatase activity utilizing nanozyme based on copper nanoparticle-modified Prussian blue. Anal Bioanal Chem. 2021;413(15):3955–63.

    Article  CAS  PubMed  Google Scholar 

  7. Hafez E, Moon BS, Shaban SM, Pyun DG, Kim DH. Multicolor diagnosis of salivary alkaline phosphatase triggered by silver-coated gold nanobipyramids. Microchim Acta. 2021;188(12):1–10.

    Article  Google Scholar 

  8. Tang Z, Chen H, He H, Ma C. Assays for alkaline phosphatase activity: progress and prospects. TrAC Trends Anal Chem. 2019;113:32–43.

    Article  CAS  Google Scholar 

  9. Zhou X, Wang M, Wang M, Su X. Nanozyme-based detection of alkaline phosphatase. ACS Appl Nano Mater. 2021;4(8):7888–96.

    Article  CAS  Google Scholar 

  10. Wang AL, Teng JX, Yang CG, Xu ZR. Rapid and facile electrospray preparation of CsPbBr3@PMMA fluorescent microspheres for fluorescent detection of ALP in biological samples. Colloids Surf A Physicochem Eng Asp. 2022;634:127909.

    Article  CAS  Google Scholar 

  11. Xi CY, Zhang M, Jiang L, Chen HY, Lv J, He Y, Hafez ME, Qian RC, Li DW. MOFs-functionalized regenerable SERS sensor based on electrochemistry for pretreatment-free detection of serum alkaline phosphatase activity. Sens Actuators B Chem. 2022;369:132264.

    Article  CAS  Google Scholar 

  12. Zhang S, Li R, Liu X, Yang L, Lu Q, Liu M, Li H, Zhang Y, Yao S. A novel multiple signal amplifying immunosensor based on the strategy of in situ-produced electroactive substance by ALP and carbon-based Ag-Au bimetallic as the catalyst and signal enhancer. Biosens Bioelectron. 2017;92:457–64.

    Article  CAS  PubMed  Google Scholar 

  13. Guo J, Liu Y, Zhang L, Pan J, Wang Y, Wang Y, Cai H, Ju H, Lu G. An ascorbic acid-responsive chemo-chromic SERS sensing chip for synergistic dual-modal on-site analysis of alkaline phosphatase. Sens Actuators B Chem. 2022;371:132527.

    Article  CAS  Google Scholar 

  14. Liu X, Fan N, Wu L, Wu C, Zhou Y, Li P, Tang B, Li R. Lighting up alkaline phosphatase in drug-induced liver injury using a new chemiluminescence resonance energy transfer nanoprobe. Chem Commun. 2018;54:2023.

    Article  Google Scholar 

  15. Zhu X, Fan L, Wang S, Lei C, Huang Y, Nie Z, Yao S. Phospholipid-tailored titanium carbide nanosheets as a novel fluorescent nanoprobe for activity assay and imaging of phospholipase D. Anal Chem. 2018;90(11):6742–8.

    Article  CAS  PubMed  Google Scholar 

  16. Fang A, Chen H, Li H, Liu M, Zhang Y, Yao S. Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions. Biosens Bioelectron. 2017;87:545–51.

    Article  CAS  PubMed  Google Scholar 

  17. Wei YY, Zhang YZ, Song D, Li J, Xu ZR. Alkaline phosphatase-regulated in situ formation of chromogenic probes for multicolor visual sensing of biomarkers. Talanta. 2021;228:122222.

    Article  CAS  PubMed  Google Scholar 

  18. Li Q, Wang Y, Zhu Q, Liu H, Liu J, Meng HM, Li Z. A dual-mode system based on molybdophosphoric heteropoly acid and fluorescent microspheres for the reliable and ultrasensitive detection of alkaline phosphatase. Analyst. 2023;148(6):1259–64.

    Article  CAS  PubMed  Google Scholar 

  19. Hu Q, Zhou B, Dang P, Li L, Kong J, Zhang X. Facile colorimetric assay of alkaline phosphatase activity using Fe(II)-phenanthroline reporter. Anal Chim Acta. 2017;950:170–7.

    Article  CAS  PubMed  Google Scholar 

  20. Wu T, Hou W, Ma Z, Liu M, Liu X, Zhang Y, Yao S. Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes. Microchimica Acta. 2019. https://doi.org/10.1007/s00604-018-3224-5.

    Article  PubMed  Google Scholar 

  21. Wang J, Ni P, Chen C, Jiang Y, Zhang C, Wang B, Cao B, Lu Y. Colorimetric determination of the activity of alkaline phosphatase by exploiting the oxidase-like activity of palladium cube@CeO2 core-shell nanoparticles. Microchimica Acta. 2020. https://doi.org/10.1007/s00604-019-4070-9.

    Article  PubMed  Google Scholar 

  22. Ding Z, Li Z, Zhao X, Miao Y, Yuan Z, Jiang Y, Lu Y. Self-deposited ultrasmall Ru nanoparticles on carbon nitride with high peroxidase-mimicking activity for the colorimetric detection of alkaline phosphatase. J Colloid Interf Sci. 2023;631:86–95.

    Article  CAS  Google Scholar 

  23. Xie X, Wang Y, Zhou X, Chen J, Wang M, Su X. Fe-N-C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase. Analyst. 2021;146(3):896–903.

    Article  CAS  PubMed  Google Scholar 

  24. Dhara K, Debiprosad RM. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal Biochem. 2019;586:113415.

    Article  CAS  PubMed  Google Scholar 

  25. Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent advances and applications in paper-based devices for point-of-care testing. J Anal Test. 2022;6:247–73.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Resmi PE, Stanley J, Kumar S, Soman KP, Ramachandran T, Satheesh Babu TG 2018 Fabrication of paper microfluidics POCT device for the colorimetric assay of alkaline phosphatase. In: INDICON 2018 - 15th IEEE India Council International Conference, 2018. p.1–4

  28. Chen X, Chen J, Zhang HY, Wang FB, Wang FF, Ji XH, He ZK. Colorimetric detection of alkaline phosphatase on microfluidic paper-based analysis devices. Chin J Anal Chem. 2016;44(4):591–6.

    Article  CAS  Google Scholar 

  29. Tai W, Yin F, Bi Y, Lin JM, Zhang Q, Wei Y, Hu Q, Yu L. Paper-based sensors for visual detection of alkaline phosphatase and alpha-fetoprotein via the distance readout. Sens Actuators B Chem. 2023;384:133666.

    Article  CAS  Google Scholar 

  30. Zhu Y, Tong X, Wei Q, Cai G, Cao Y, Tong C, Shi S, Wang F. 3D origami paper-based ratiometric fluorescent microfluidic device for visual point-of-care detection of alkaline phosphatase and butyrylcholinesterase. Biosens Bioelectron. 2022;196:113691.

    Article  CAS  PubMed  Google Scholar 

  31. Lakshmi Devi A, Resmi PE, Pradeep A, Suneesh PV, Nair BG, Satheesh Babu TG. A paper-based point-of-care testing device for the colourimetric estimation of bilirubin in blood sample. Spectrochim Acta A Mol Biomol Spectrosc. 2023;287(P1):122045.

    Article  CAS  PubMed  Google Scholar 

  32. Resmi PE, Sachin Kumar S, Alageswari D, Suneesh PV, Ramachandran T, Nair BG, Satheesh Babu TG. Development of a paper-based analytical device for the colourimetric detection of alanine transaminase and the application of deep learning for image analysis. Anal Chim Acta. 2021;1188:339158.

    Article  CAS  PubMed  Google Scholar 

  33. Edachana RP, Kumaresan A, Balasubramanian V, Thiagarajan R, Nair BG, Thekkedath Gopalakrishnan SB. Paper-based device for the colorimetric assay of bilirubin based on in-situ formation of gold nanoparticles. Microchimica Acta. 2020. https://doi.org/10.1007/s00604-019-4051-z.

    Article  Google Scholar 

  34. Emerson E, Kelly K. The condensation of aminoantipyrine. vi. a study of the effect of excess base on the reaction of amino-antipyrine with phenolic compounds in the presence of oxidizing agents. J Org Chem. 1948;13(4):532–4.

    Article  CAS  Google Scholar 

  35. Kim HY, Lee HJ, Chang SK. Reaction-based colorimetric signaling of Cu2+ ions by oxidative coupling of phenols with 4-aminoantipyrine. Talanta. 2015;132:625–9.

    Article  CAS  PubMed  Google Scholar 

  36. Baş D. Sensitive and reliable paper-based glucose sensing mechanisms with smartphone readout using the: L * a * b * color space. Anal Methods. 2017;9(47):6698–704.

    Article  Google Scholar 

  37. Mahato K, Chandra P. Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens Bioelectron. 2019;128:9–16.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Nie J, Wang H, Yang J, Wang B, Zhang Y, Li J. Instrument-free quantitative detection of alkaline phosphatase using paper-based devices. Anal Methods. 2017;9(22):3375–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biotechnology (DBT), Government of India for financial support. Project Sanction order No. 102/IFD/SAN/2238/2016-17 and Project Sanction order No.102/IFD/SAN/1555/2018-2019.

Funding

Department of Biotechnology, Ministry of Science and Technology, India, 102/IFD/SAN/1555/2018-2019, 102/IFD/SAN/2238/2016-17

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Satheesh Babu.

Ethics declarations

Conflict of interest

The authors have no competing interests relevant to the content of this article to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1879 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alageswari, D., Lakshmi Devi, A., Resmi, P.E. et al. Paper Analytical Device for the Colourimetric Detection of Alkaline Phosphatase in Serum and Saliva. J. Anal. Test. (2024). https://doi.org/10.1007/s41664-024-00304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-024-00304-3

Keywords

Navigation