Skip to main content
Log in

Identification and Analysis of the Intermediates from Photodegradation of 3,3′-diamino-4,4′-azoxyfurazan (DAAF) by SERS and HPLC–MS/MS

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Understanding the structural changes and degradation mechanisms of organic pollutants is critical in environmental research. In this work, a xenon lamp was used as an analog light source to simulate the effect of sunlight on 3,3′-diamino-4,4′-azoxyfurazan (DAAF) in aqueous solution. Combining high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS), surface-enhanced Raman spectroscopy (SERS) with density functional theory (DFT), the degradation intermediates and mechanisms of DAAF were investigated. The sequential breakdown of the –NH2 and –O–N= bonds, followed by the removal of atomic O from –N=N(O)–, was emphasized and investigated using two-dimensional correlation spectroscopy (2D-COS) and SERS spectra. Three intermediates with mass-to-charge ratios (m/z) 181, 251 and 180 were identified and characterized by integrating experimental SERS data with DFT-calculated Raman spectra based on structures hypothesized from MS spectra. The findings from HPLC–MS and SERS not only corroborate each other but also provide a foundation for a detailed examination of the DAAF degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the finding reported herein are available on reasonable request from the corresponding author.

References

  1. Sharma K, Sangwan P, Sharma P. Microbial degradation of explosive manufacturing facility wastewater in a bioreactor. Int J Environ Res. 2023;17(4):49.

    Article  CAS  Google Scholar 

  2. Celin SM, Sahai S, Kalsi A, Bhanot P. Environmental monitoring approaches used during bioremediation of soils contaminated with hazardous explosive chemicals. Trends Environ Anal Chem. 2020;26: e00088.

    Article  CAS  Google Scholar 

  3. Khue DN, Chat NV, Minh DB, Lam TD, Lan PH, Loi VD. Degradation and mineralization of 2,4,6-trinitroresorcine in various photochemical systems. Mater Sci Eng C. 2013;33(4):1975–82.

    Article  CAS  Google Scholar 

  4. Yan J, Jin B, Zhao P, Peng RF. Facile fabrication of BiOCl nanoplates with high exposure 001 facets for efficient photocatalytic degradation of nitro explosives. Inorg Chem Front. 2021;8(3):777–86.

    Article  CAS  Google Scholar 

  5. Khan MA, Sharma A, Yadav S, Celin SM, Sharma S, Noureldeen A, Darwish H. Enhancing remediation of RDX-contaminated soil by introducing microbial formulation technology coupled with biostimulation. J Environ Chem Eng. 2021;9(5): 106019.

    Article  CAS  Google Scholar 

  6. Zhang WH, Deng YD, Chen ZF, Zuo ZH, Tian YS, Xu J, Wang B, Wang LJ, Han HJ, Li ZJ, Wang Y, Yao QH, Gao JJ, Fu XY, Peng RH. Metabolic engineering of Escherichia coli for 2,4-dinitrotoluene degradation. Ecotoxicol Environ Saf. 2023;262: 115287.

    Article  CAS  PubMed  Google Scholar 

  7. Monga D, Kaur P, Singh B. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals. Curr Res Microb Sci. 2022;3: 100092.

    CAS  PubMed  Google Scholar 

  8. Gawel A, Suehnholz S, Georgi A, Kopinke FD, Mackenzie K. Fe-zeolites for the adsorption and oxidative degradation of nitroaromatic compounds in water. J Hazard Mater. 2023;459: 132125.

    Article  CAS  PubMed  Google Scholar 

  9. Wang LX, Tuo XL, Yi CH, Zou HT, Xu J, Xu WL. Theoretical study on the trans-cis isomerization and initial decomposition of energetic azofurazan and azoxyfurazan. J Mol Graph Model. 2009;28(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  10. Chen JB, Ding H, Li JJ, Chen Y, Liu Y, Zhao XY. Development and validation of HPLC method for DAAF and its applications in quality control and environmental monitoring. Propellants Explos Pyrotech. 2020;45(10):1580–9.

    Article  CAS  Google Scholar 

  11. Xu SB, Zhu YF, Jiang L, Dan Y. Visible light induced photocatalytic degradation of methyl orange by polythiophene/TiO2 composite particles. Water Air Soil Pollut. 2010;213(1–4):151–9.

    Article  CAS  ADS  Google Scholar 

  12. Hu ZY, Wang YL, Wang LZ, Wang Q, Zhang QF, Cui FZ, Jiang GF. Synthesis of S-type heterostructure tc-COF for photocatalytic tetracycline degradation. Chem Eng J. 2024;479: 147534.

    Article  CAS  Google Scholar 

  13. Chen WH, Dai M, Xiang L, Zhao S, Wang SG, He ZL. Assembling S-scheme heterojunction between basic bismuth nitrate and bismuth tungstate with promoting charges’ separation for accelerated photocatalytic sulfamethazine degradation. J Mater Sci Technol. 2024;171:185–97.

    Article  Google Scholar 

  14. Kaur P, Sud D. Photocatalytic degradation of quinalphos in aqueous TiO2 suspension: reaction pathway and identification of intermediates by GC/MS. J Mol Catal A Chem. 2012;365:32–8.

    Article  CAS  Google Scholar 

  15. Cheng ZQ, Zhou Y, Zhao XY, Chen ZW, Zhang ST, Zhu ZG, Zhou YJ, Yang Y, Qi JW, Li JS. Efficient removal of VOCs emission from soil thermal desorption via MnCoOx/Kaolin activating peroxymonosulfate in wet scrubber. Chem Eng J. 2024;480: 148159.

    Article  CAS  Google Scholar 

  16. Zhang LF, Zhao RF, Wu YZ, Zhang ZY, Chen Y, Liu MC, Zhou N, Wang YQ, Fu XL, Zhuang XM, Wang JP, Chen LX. Ultralow-background SERS substrates for reliable identification of organic pollutants and degradation intermediates. J Hazard Mater. 2023;460: 132508.

    Article  CAS  PubMed  Google Scholar 

  17. Santos PB, Santos JJ, Correa CC, Corio P, Andrade GFS. Plasmonic photodegradation of textile dye Reactive Black 5 under visible light: a vibrational and electronic study. J Photochem Photobiol A. 2019;371:159–65.

    Article  CAS  Google Scholar 

  18. Cai T, Wang LL, Liu YT, Zhang SQ, Dong WY, Chen H, Yi XY, Yuan JL, Xia XN, Liu CB, Luo S. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl Catal B. 2018;239:545–54.

    Article  CAS  Google Scholar 

  19. Li RZ, Zhou AH, Lu Q, Yang CZ, Zhang JD. In situ monitoring and analysis of the photocatalytic degradation process and mechanism on recyclable Au NPs-TiO2 NTs substrate using surface-enhanced Raman scattering. Colloids Surf A. 2013;436:270–8.

    Article  CAS  Google Scholar 

  20. Niu XZ, Busetti F, Langsa M, Croue JP. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Res. 2016;106:214–22.

    Article  CAS  PubMed  Google Scholar 

  21. Huang Q, Fang C, Muhammad M, Yao GH. Assessment of norfloxacin degradation induced by plasma-produced ozone using surface-enhanced Raman spectroscopy. Chemosphere. 2020;238: 124618.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen TB, Doong RA, Huang CP, Chen CW, Dong CD. Activation of persulfate by CoO nanoparticles loaded on 3D mesoporous carbon nitride (CoO@meso-CN) for the degradation of methylene blue (MB). Sci Total Environ. 2019;675:531–41.

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Xu H, Ou YY, Hu XJ, Chen D, Li XG, Tang CF, Zheng X. Preparation of reed-based hydrothermal carbonized carbon photocatalyst and effective degradation of methylene blue and tetracycline. Environ Sci Pollut Res. 2023;30(16):48048–61.

    Article  CAS  Google Scholar 

  24. Hawari J, Deschamps S, Beaulieu C, Paquet L, Halasz A. Photodegradation of CL-20: insights into the mechanisms of initial reactions and environmental fate. Water Res. 2004;38(19):4055–64.

    Article  CAS  PubMed  Google Scholar 

  25. Langer J, de Aberasturi DJ, Aizpurua J, Alvarez-Puebla RA, Auguie B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, de Abajo FJG, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Ka M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhofer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlucker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzan LM. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020;14(1):28–117.

    Article  CAS  PubMed  Google Scholar 

  26. Liu J, Liu W, Zhou SN, Wang DM, Gong ZJ, Fan MK. Free-standing membrane liquid-State platform for SERS-based determination of norfloxacin in environmental samples. J Anal Test. 2021;5(3):217–24.

    Article  Google Scholar 

  27. Cheng H, Yang SW, Wang DM, Huang B, Fan MK, Zhang LY, Xu T, Yang GC. Study on the photolysis route of nano 2,2′,4,4′,6,6′-hexanitrostillbene by vibrational spectroscopy. J Anal Test. 2021;5(3):197–202.

    Article  Google Scholar 

  28. Chu Q, Wang W, Guo S, Park E, Jin SL, Park Y, Chen L, Liu YC, Jung YM. Interface design of 3D flower-like Ag@ZnSe composites: SERS and photocatalytic performance. ACS Appl Mater Interfaces. 2023. https://doi.org/10.1021/acsami.2c21833.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun J, Gong L, Lu Y, Wang DM, Gong ZJ, Fan MK. Dual functional PDMS sponge SERS substrate for the on-site detection of pesticides both on fruit surfaces and in juice. Analyst. 2018;143(11):2689–95.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Liu W, Huang YT, Liu J, Chao SM, Liu XK, Wang DM, Gong ZJ, Li CM, Fan MK, Huang CZ. Self-healing 3D liquid freestanding plasmonic nanoparticle membrane for reproducible surface-enhanced Raman spectroscopy sensing. ACS Appl Nano Mater. 2020;3(10):10014–21.

    Article  CAS  Google Scholar 

  31. Liu J, Liu W, Huang YT, Zhao X, Feng Z, Wang DM, Gong ZJ, Fan MK. Self-supporting liquid film as reproducible SERS platform for therapeutic drug monitoring of berberine hydrochloride in human urine. Microchem J. 2021;165: 106122.

    Article  CAS  Google Scholar 

  32. Chen JB, Zhao X, Zhang Z, Chen Y, Fu X, Liu Y. Separation and characterization of the impurities in 3,3-diamino-4,4-a-zoxyfurazan by ultrahigh-performance liquid chromatography combined with Q-orbitrap mass spectrometry. Microchem J. 2021;170: 106647.

    Article  CAS  Google Scholar 

  33. Gao C, Wang JK, Wang J, Dai RC, Wang ZP, Zhang ZM. Initial decomposition step and bimolecular hydrogen transfer of 3 3′-diamino-4, 4′-azoxyfurazan under high pressure and high temperature. Combust Flame. 2022;240: 111981.

    Article  CAS  Google Scholar 

  34. Kerker M, Siiman O, Bumm LA, Wang DS. Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver. Appl Opt. 1980;19(19):3253–5.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Munro CH, Smith WE, Garner M, Clarkson J, White PC. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman-scattering. Langmuir. 1995;11(10):3712–20.

    Article  CAS  Google Scholar 

  36. Gao C, Li XD, Qu YY, Dai RC, Wang ZP, Li HZ, Zhang ZM. Pressure-dependent luminescence and absorption in 3,3′-diamino-4,4′-azoxyfurazan: secondary bonding interaction in molecular crystals. J Phys Chem C. 2019;123(14):8731–9.

    Article  CAS  Google Scholar 

  37. Chellappa RS, Dattelbaum DM, Coe JD, Velisavljevic N, Stevens LL, Liu ZX. Intermolecular stabilization of 3,3′-diamino-4,4′-azoxyfurazan (DAAF) compressed to 20 GPa. J Phys Chem A. 2014;118(31):5969–82.

    Article  CAS  PubMed  Google Scholar 

  38. Noda I. Generalized 2-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl Spectrosc. 1993;47(9):1329–36.

    Article  CAS  ADS  Google Scholar 

  39. Noda I. Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species. J Mol Struct. 2014;1069:50–9.

    Article  CAS  ADS  Google Scholar 

  40. Matanfack GA, Taubert M, Guo SX, Bocklitz T, Kuesel K, Roesch P, Popp J. Monitoring deuterium uptake in single bacterial cells via two-dimensional Raman correlation spectroscopy. Anal Chem. 2021;93(21):7714–23.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Research Fund of SWUST for Ph.D. (22zx7175), the Sichuan Science and Technology Program (24NSFSC5122), and the Analytical and Testing Center of Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Li or Meikun Fan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1362 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhang, Z., Zheng, W. et al. Identification and Analysis of the Intermediates from Photodegradation of 3,3′-diamino-4,4′-azoxyfurazan (DAAF) by SERS and HPLC–MS/MS. J. Anal. Test. (2024). https://doi.org/10.1007/s41664-024-00303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-024-00303-4

Keywords

Navigation