Skip to main content
Log in

Near-Infrared Light-Activatable Melanized Paclitaxel Nano–Self-Assemblies for Synergistic Anti-tumor Therapy

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Building self-assembly nanostructures is an important way to overcome the limitations of paclitaxel in tumor therapy. However, this strategy is also faced with challenges, such as difficulties in efficient release and the potential for drug resistance. Herein, we developed a near-infrared light-activatable melanized paclitaxel self-assembly nanoparticles for synergistic anti-tumor therapy. In this strategy, paclitaxel dimer prodrugs were synthesized and paclitaxel nanoparticles were obtained through self-assembly. Finally, the paclitaxel dimer nanoparticles were capped with polydopamine (PDA, melanoidin) and human serum albumin (HSA). The disulfide bonds in paclitaxel dimeric prodrug specifically respond to high concentrations of glutathione (GSH) and reactive oxygen species (ROS) in tumor cells. PDA enhances the biocompatibility of the drug molecules and imparts near-infrared photothermal conversion capability to the nano–self-assemblies. Both the in vitro and in vivo experiments demonstrated that this paclitaxel nanoprodrug exhibited enhanced tumor therapeutic efficacy under near-infrared light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data and materials in current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Sun HT, Zhang Q, Li JC, Peng SJ, Wang XL, Cai R. Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today. 2021;37: 101073.

    Article  CAS  Google Scholar 

  3. Qiao J, Li XF, Qi L. Fluorescent polymer-modified gold nanobipyramids for temperature sensing during photothermal therapy in living cells. Chin Chem Lett. 2022;33(6):3193–6.

    Article  CAS  Google Scholar 

  4. Huang QW, Zhu WS, Gao XY, Liu XP, Zhang ZJ, Xing BG. Nanoparticles-mediated ion channels manipulation: From their membrane interactions to bioapplications. Adv Drug Delivery Rev. 2023;195: 114763.

    Article  CAS  Google Scholar 

  5. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy- mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107.

    Article  PubMed  Google Scholar 

  6. Yang YJ, Zhang YF, Wang R, Rong X, Liu T, Xia X, Fan JL, Sun W, Peng XJ. A glutathione activatable pro-drug-photosensitizer for combined chemotherapy and photodynamic therapy. Chin Chem Lett. 2022;33(10):4583–6.

    Article  CAS  Google Scholar 

  7. Zhang ZJ, Han QY, Lau JW, Xing BG. Lanthanide-doped upconversion nanoparticles meet the needs for cutting-edge bioapplications: recent progress and perspectives. ACS Mater Lett. 2020;2(11):1516–31.

    Article  CAS  Google Scholar 

  8. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, LaFleur MW, Juneja VR, Weiss SA, Lo J, Fisher DE, Miao D, Van Allen E, Root DE, Sharpe AH, Doench JG, Haining WN. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547(7664):413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang YH, Mao JW, Tan XL. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin J Nat Med. 2020;18(12):890–7.

    CAS  PubMed  Google Scholar 

  10. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277(5698):665–7.

    Article  CAS  PubMed  Google Scholar 

  11. Govindan R, Szczesna A, Ahn MJ, Schneider CP, Mella PFG, Barlesi F, Han BH, Ganea DE, Von Pawel J, Vladimirov V, Fadeeva N, Lee KH, Kurata T, Zhang L, Tamura T, Postmus PE, Jassem J, O’Byrne K, Kopit J, Li MS, Tschaika MReck M. Phase III trial of ipilimumab combined with paclitaxel and carboplatin in advanced squamous non-small-cell lung cancer. J Clin Oncol. 2017;35(30):3449–57.

    Article  CAS  PubMed  Google Scholar 

  12. Vokes EE, Haraf DJ, Stenson K, Stupp R, Malone D, Levin J, Weichselbaum RR. The role of paclitaxel in the treatment of head and neck cancer. Semin Oncol. 1995;22(5 Suppl 12):8–12.

    CAS  PubMed  Google Scholar 

  13. Damen EWP, Wiegerinck PHG, Braamer L, Sperling D, de Vos D, Scheeren HW. Paclitaxel esters of malic acid as prodrugs with improved water solubility. Bioorg Med Chem. 2000;8(2):427–32.

    Article  CAS  PubMed  Google Scholar 

  14. Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, Milas L, Wallace S. Complete regression of well-established tumors using a novel water-soluble poly(l-Glutamic Acid)-paclitaxel conjugate1. Cancer Res. 1998;58(11):2404–9.

    CAS  PubMed  Google Scholar 

  15. Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003;86(1):33–48.

    Article  CAS  PubMed  Google Scholar 

  16. Havel H, Finch G, Strode P, Wolfgang M, Zale S, Bobe I, Youssoufian H, Peterson M, Liu M. Nanomedicines: from bench to bedside and beyond. Aaps J. 2016;18(6):1373–8.

    Article  CAS  PubMed  Google Scholar 

  17. Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2018;14(1):93–126.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu X, Chen XM, Wang XY, He HS, Chen JW, Wu W. Paclitaxel-lipid prodrug liposomes for improved drug delivery and breast carcinoma therapy. Chin Chem Lett. 2023: 108756.

  19. Tang L, Xie MY, Li J, Mei YJ, Cao YQ, Xiao QQ, Dong HJ, Zhang YH, Wang W. Leveraging nano-engineered mesenchymal stem cells for intramedullary spinal cord tumor treatment. Chin Chem Lett. 2023;34(5): 107801.

    Article  CAS  Google Scholar 

  20. Sun XD, Wu QR, Li W, Gong XQ, Ge JY, Wu JB, Gao XH. Facile fabrication of drug-loaded PEGDA microcapsules for drug evaluation using droplet-based microchip. Chin Chem Lett. 2022;33(5):2697–700.

    Article  CAS  Google Scholar 

  21. Fu SW, Li GT, Zang WL, Zhou XY, Shi KX, Zhai YL. Pure drug nano-assemblies: a facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharmacol Sin B. 2022;12(1):92–106.

    Article  Google Scholar 

  22. Xu JW, Yan XG, Ge X, Zhang MZ, Dang XG, Yang Y, Xu F, Luo YL, Li GL. Novel multi-stimuli responsive functionalized PEG-based co-delivery nanovehicles toward sustainable treatments of multidrug resistant tumor. J Mater Chem B. 2021;9(5):1297–314.

    Article  CAS  PubMed  Google Scholar 

  23. Han QY, Lau JW, Do TC, Zhang ZJ, Xing BG. Near-infrared light brightens bacterial disinfection: recent progress and perspectives. ACS Appl Bio Mater. 2021;4(5):3937–61.

    Article  CAS  PubMed  Google Scholar 

  24. Jiao LZ, Li QS, Li CM, Gu JH, Liu XP, He SJ, Zhang ZJ. Orthogonal light-triggered multiple effects based on photochromic nanoparticles for DNA cleavage and beyond. J Mater Chem B. 2023;11(11):2367–76.

    Article  CAS  PubMed  Google Scholar 

  25. Fu QR, Zhang X, Song JB, Yang HH. Plasmonic gold nanoagents for cancer imaging and therapy. View. 2021;2(5):20200149.

    Article  CAS  Google Scholar 

  26. Jing LH, Yang C, Zhang PS, Zeng JF, Li Z, Gao MY. Nanoparticles weaponized with built-in functions for imaging-guided cancer therapy. View. 2020;1(2): e19.

  27. Pei Q, Hu XL, Zheng XH, Xia R, Liu S, Xie ZG, Jing XB. Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy. Nano Res. 2019;12(4):877–87.

    Article  CAS  Google Scholar 

  28. Yu SL, Zhang YJ, Wang X, Zhen X, Zhang ZH, Wu W, Jiang XQ. Synthesis of paclitaxel-conjugated β-cyclodextrin polyrotaxane and its antitumor activity. Angew Chem Int Ed. 2013;52(28):7272–7.

    Article  CAS  Google Scholar 

  29. Sobczak M, Korzeniowska A, Goś P, Kolodziejski WL. Preparation and characterization of polyester- and poly(ester-carbonate)-paclitaxel conjugates. Eur J Med Chem. 2011;46(7):3047–51.

    Article  CAS  PubMed  Google Scholar 

  30. Wang YJ, Liu D, Zheng QC, Zhao Q, Zhang HJ, Ma Y, Fallon JK, Fu Q, Haynes MT, Lin G, Zhang R, Wang D, Yang X, Zhao L, He Z, Liu F. Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines. Nano Lett. 2014;14(10):5577–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun BJ, Luo C, Zhang XB, Guo MR, Sun MC, Yu H, Chen Q, Yang WQ, Wang ML, Zuo SY, Chen PY, Kan QM, Zhang HT, Wang YJ, He ZG, Sun J. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat Commun. 2019;10(1):3211.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kang WB, Ji YH, Cheng Y. Van der Waals force-driven indomethacin-ss-paclitaxel nanodrugs for reversing multidrug resistance and enhancing NSCLC therapy. Int J Pharm. 2021;603: 120691.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng XY, Chen F, Zhang JX, Cai KY. Silica-assisted incorporation of polydopamine into the framework of porous nanocarriers by a facile one-pot synthesis. J Mater Chem B. 2016;4(14):2435–43.

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Pei Q, Xia R, Liu S, Hu XL, Xie ZG, Jing XB. Comparison of redox responsiveness and antitumor capability of paclitaxel dimeric nanoparticles with different linkers. Chem Mater. 2020;32(24):10719–27.

    Article  CAS  Google Scholar 

  35. Rowinsky EK, Donehower RC. Paclitaxel (Taxol). N Engl J Med. 1995;332(15):1004–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (NSFC) (22007083); Zhejiang Provincial Innovation Center of Advanced Textile Technology and the Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University (KYY2022004C); the Fundamental Research Funds of Shengzhou Innovation Research Institute of Zhejiang Sci-Tech University (SYY2023B000004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijun Yao, Maozhong Miao or Zhijun Zhang.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 864 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Li, P., Huang, Q. et al. Near-Infrared Light-Activatable Melanized Paclitaxel Nano–Self-Assemblies for Synergistic Anti-tumor Therapy. J. Anal. Test. 7, 204–214 (2023). https://doi.org/10.1007/s41664-023-00262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00262-2

Keywords

Navigation