ATR–FTIR Spectroscopy Combined with the Invitro Antioxidant Activity and Chromaticity for Rapid Discrimination of Fig (Ficus carica L.) Cultivars

Abstract

Vibrational spectroscopy analysis of full-ripened fig fruits (Ficus carica L.) was acquired using Fourier-transformed infrared (FTIR) spectroscopy by attenuated total reflectance (ATR). The objective of this study was to investigate accurate discrimination of 25 fig cultivars using chemometric analysis of both ATR–FTIR fingerprinting and in-vitro antioxidant activity along with chromatic coordinates color. In-vitro antioxidant activity was assessed through three methods and displayed statistically significant differences across cultivars and between the fruit parts, with promising antioxidant potency. Infrared spectra were measured separately on both peels and pulp to better know which fruit part provides high discrimination throughput between cultivars. The results showed vibration intensities of five fingerprint regions displaying statically significant differences. The highest vibration intensity occurred in the region of 1175–940 cm−1 including the phenols fingerprint. Principal components analysis based on integrated intensities corresponding to fingerprint regions, revealed two main groups in pulp samples, while five groups in peels samples. The pulp extracts of ‘Nabout’ showed a typical vibration in 3000–2800 cm−1 and 1775–1725 cm−1 regions and, therefore was classified as single subset in cultivars scatterplot. This cultivar had a light-colored fig and exhibited the highest antioxidant potency for all essays particularly in peel extracts. The biochemical assessment and FTIR fingerprinting data were involved in PCA analysis, and that displayed some dissimilarities in the classification patterns, given the fact that antioxidant activities and chromaticity together could not totally explain the classification based on FTIR fingerprinting between peel and pulp. Application of FTIR–ATR spectroscopy to discriminate fig cultivars seems to be a rapid, accurate and cost-effective alternative to laborious measurement techniques, in fig quality screening and preselection, such as chromatography analysis. This study suggests the use of fig peels for a high-level discrimination while using ATR–FTIR spectroscopy, since it provides high-throughput screening framework.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Solomon A, Golubowicz S, Yablowicz Z, Grossman S, Bergman M, Gottlieb HE, et al. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J Agric Food Chem. 2006;54(20):7717–23.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Solomon A, Golubowicz S, Yablowicz Z, Bergman M, Grossman S, Altman A, Kerem Z, Flaishman MA. EPR studies of \({{\text{O}_2}^{\cdot-}}\), OH, and 1O2 scavenging and prevention of glutathione depletion in fibroblast cells by cyanidin-3-rhamnoglucoside isolated from fig (Ficus carica L.) fruits. J Agric Food Chem. 2010;58(12):7158–65.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Sagar VR, Kumar PS. Recent advances in drying and dehydration of fruits and vegetables: a review. J Food Sci Technol. 2010;47(1):15–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Nadeem M, Zeb A. Impact of maturity on phenolic composition and antioxidant activity of medicinally important leaves of Ficus carica L. Physiol Mol Biol Plants. 2018;24(5):881–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Ercisli S, Tosun M, Karlidag H, Dzubur A, Hadziabulic S, Aliman Y. Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods Hum Nutr. 2012;67(3):271–6.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Hssaini L, Charafi J, Razouk R, Hernández F, Fauconnier ML, Ennahli S, Hanine H. Assessment of morphological traits and fruit metabolites in eleven fig varieties (Ficus carica L.). Int J Fruit Sci. 2020;20(sup2):8–28.

    Article  Google Scholar 

  7. 7.

    Bureau S, Ruiz D, Reich M, Gouble B, Bertrand D, Audergon JM, Renard CM. Application of ATR-FTIR for a rapid and simultaneous determination of sugars and organic acids in apricot fruit. Food Chem. 2009;115(3):1133–40.

    CAS  Article  Google Scholar 

  8. 8.

    Das T, Harshey A, Nigam K, Yadav VK, Srivastava A. Analytical approaches for bloodstain aging by vibrational spectroscopy: current trends and future perspectives. Microchem J. 2020;18:105278.

    Article  CAS  Google Scholar 

  9. 9.

    Ren G, Wang Y, Ning J, Zhang Z. Highly identification of keemun black tea rank based on cognitive spectroscopy: near infrared spectroscopy combined with feature variable selection. Spectrochimica Acta Part A Mol Biomol Spectrosc. 2020;230:118079.

    CAS  Article  Google Scholar 

  10. 10.

    Bouyanfif A, Liyanage S, Hequet E, Moustaid-Moussa N, Abidi N. FTIR microspectroscopy reveals fatty acid-induced biochemical changes in C. elegans. Vib Spectrosc. 2019;102:8–15.

    CAS  Article  Google Scholar 

  11. 11.

    Kohler A, Sulé-Suso J, Sockalingum GD, Tobin M, Bahrami F, Yang Y, Pijanka J, Dumas P, Cotte M, Van Pittius DG, Parkes G. Estimating and correcting Mie scattering in synchrotron-based microscopic Fourier transform infrared spectra by extended multiplicative signal correction. Appl Spectrosc. 2008;62(3):259–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Griffiths PR, De Haseth JA. Fourier transform infrared spectrometry. Wiley; 2007.

    Book  Google Scholar 

  13. 13.

    Cebi N, Durak MZ, Toker OS, Sagdic O, Arici M. An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chem. 2016;190:1109–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Jacob SJ, Prasad VS, Sivasankar S, Muralidharan P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica—screening for its anticancer activity and toxicity in animal models. Food Chem Toxicol. 2017;109:951–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Dong D, Zhao C, Zheng W, Wang W, Zhao X, Jiao L. Analyzing strawberry spoilage via its volatile compounds using longpath Fourier transform infrared spectroscopy. Sci Rep. 2013;3(1):1–7.

    Google Scholar 

  16. 16.

    Coimbra MA, Barros A, Rutledge DN, Delgadillo I. FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydr Res. 1999;317(1–4):145–54.

    CAS  Article  Google Scholar 

  17. 17.

    Vardin H, Tay A, Ozen B, Mauer L. Authentication of pomegranate juice concentrate using FTIR spectroscopy and chemometrics. Food Chem. 2008;108(2):742–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Yang H, Irudayaraj J. Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques. J Pharm Pharmacol. 2002;54(9):1247–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Defernez M, Kemsley EK, Wilson RH. Use of infrared spectroscopy and chemometrics for the authentication of fruit purees. J Agric Food Chem. 1995;43(1):109–13.

    CAS  Article  Google Scholar 

  20. 20.

    Duarte IF, Barros A, Delgadillo I, Almeida C, Gil AM. Application of FTIR spectroscopy for the quantification of sugars in mango juice as a function of ripening. J Agric Food Chem. 2002;50(11):3104–11.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Soriano A, Pérez-Juan PM, Vicario A, González JM, Pérez-Coello MS. Determination of anthocyanins in red wine using a newly developed method based on Fourier transform infrared spectroscopy. Food Chem. 2007;104(3):1295–303.

    CAS  Article  Google Scholar 

  22. 22.

    De Nardo T, Shiroma-Kian C, Halim Y, Francis D, Rodriguez-Saona LE. Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. J Agric Food Chem. 2009;57(4):1105–12.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. 23.

    Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int. 2009;188(1–3):1–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Muro CK, Doty KC, Bueno J, Halamkova L, Lednev IK. Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem. 2015;87(1):306–27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Brand-Williams W, Cuvelier ME, Berset CL. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28(1):25–30.

    CAS  Article  Google Scholar 

  26. 26.

    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med. 1999;26(9–10):1231–7.

    CAS  Article  Google Scholar 

  27. 27.

    MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochimica et Biophysica Acta (BBA) Biomembranes. 1991;1061(2):297–303.

    CAS  Article  Google Scholar 

  28. 28.

    Freire AL, Ramos CL, da Costa Souza PN, Cardoso MG, Schwan RF. Non-dairy beverage produced by controlled fermentation with potential probiotic starter cultures of lactic acid bacteria and yeast. Int J Food Microbiol. 2017;248:39–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Shen X, Xu L, Ye S, Hu R, Jin L, Xu H, Liu W. Automatic baseline correction method for the open-path Fourier transform infrared spectra by using simple iterative averaging. Opt Express. 2018;26(10):A609–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Stinco CM, Rodríguez-Pulido FJ, Escudero-Gilete ML, Gordillo B, Vicario IM, Meléndez-Martínez AJ. Lycopene isomers in fresh and processed tomato products: correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Res Int. 2013;50(1):111–20.

    CAS  Article  Google Scholar 

  31. 31.

    Kuś PM, Congiu F, Teper D, Sroka Z, Jerković I, Tuberoso CI. Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six polish unifloral honey types. LWT-Food Sci Technol. 2014;55(1):124–30.

    Article  CAS  Google Scholar 

  32. 32.

    Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci. 2016;8:33–42.

    Article  Google Scholar 

  33. 33.

    Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018;27(4):805–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Harzallah A, Bhouri AM, Amri Z, Soltana H, Hammami M. Phytochemical content and antioxidant activity of different fruit parts juices of three figs (Ficus carica L.) varieties grown in Tunisia. Ind Crops Prod. 2016;83:255–67.

    CAS  Article  Google Scholar 

  35. 35.

    Ayala-Zavala J, Vega-Vega V, Rosas-Domínguez C, Palafox-Carlos H, Villa-Rodriguez JA, Siddiqui MW, Dávila-Aviña JE, González-Aguilar GA. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res Int. 2011;44(7):1866–74.

    CAS  Article  Google Scholar 

  36. 36.

    Ying D, Hlaing MM, Lerisson J, Pitts K, Cheng L, Sanguansri L, Augustin MA. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food Res Int. 2017;100:665–73.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Harvey TJ, Gazi E, Henderson A, Snook RD, Clarke NW, Brown M, Gardner P. Factors influencing the discrimination and classification of prostate cancer cell lines by FTIR microspectroscopy. Analyst. 2009;134(6):1083–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Da Silva DF, Ogawa CY, Sato F, Neto AM, Larsen FH, Matumoto-Pintro PT. Chemical and physical characterization of Konjac glucomannan-based powders by FTIR and 13C MAS NMR. Powder Technol. 2020;361:610–6.

    Article  CAS  Google Scholar 

  39. 39.

    Gok S, Severcan M, Goormaghtigh E, Kandemir I, Severcan F. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem. 2015;170:234–40.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Galysh V, Sevastyanova O, Кartel M, Lindström ME, Gornikov Y. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. J Therm Anal Calorim. 2017;128(2):1019–25.

    CAS  Article  Google Scholar 

  41. 41.

    Sun C, Jin L, Cai Y, Zheng X, Yu T. (1→3)-β-d-glucan from yeast cell wall: characteristic and potential application in controlling postharvest disease of pear. Postharvest Biol Technol. 2019;154:105–14.

    CAS  Article  Google Scholar 

  42. 42.

    Croce R, Malegori C, Oliveri P, Medici I, Cavaglioni A, Rossi C. Prediction of quality parameters in straw wine by means of FT-IR spectroscopy combined with multivariate data processing. Food Chem. 2020;305:125512.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Sazonova S, Grube M, Shvirksts K, Galoburda R, Gramatina I. FTIR spectroscopy studies of high pressure-induced changes in pork macromolecular structure. J Mol Struct. 2019;1186:377–83.

    CAS  Article  Google Scholar 

  44. 44.

    Hssaini L, Hanine H, Charafi J, Razouk R, Elantari A, Ennahli S, Hernández F, Ouaabou R. First report on fatty acids composition, total phenolics and antioxidant activity in seeds oil of four fig cultivars (Ficus carica L.) grown in Morocco. OCL. 2020;27:8.

    CAS  Article  Google Scholar 

  45. 45.

    Bouafif H, Koubaa A, Perré P, Cloutier A, Riedl B. Analysis of among-species variability in wood fiber surface using DRIFTS and XPS: effects on esterification efficiency. J Wood Chem Technol. 2008;28(4):296–315.

    CAS  Article  Google Scholar 

  46. 46.

    Hssaini L, Hanine H, Razouk R, Ennahli S, Mekaoui A, Guirrou I, Charafi J. Diversity screening of fig (Ficus carica L.) germplasm through integration of morpho-agronomic and biochemical traits. Int J Fruit Sci. 2020;20(4):939–58.

    Article  Google Scholar 

  47. 47.

    Maghsoudlou E, Esmaeilzadeh Kenari R, Raftani AZ. Evaluation of antioxidant activity of fig (Ficus carica) pulp and skin extract and its application in enhancing oxidative stability of canola oil. J Food Process Preserv. 2017;41(4):e13077.

    Article  CAS  Google Scholar 

  48. 48.

    Arasi AY, Jeyakumari JJ, Sundaresan B, Dhanalakshmi V, Anbarasan R. The structural properties of poly (aniline)—analysis via FTIR spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc. 2009;74(5):1229–34.

    Article  CAS  Google Scholar 

  49. 49.

    Reid LM, Woodcock T, O’Donnell CP, Kelly JD, Downey G. Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data. Food Res Int. 2005;38(10):1109–15.

    CAS  Article  Google Scholar 

  50. 50.

    Cassani L, Santos M, Gerbino E, del Rosario MM, Gómez-Zavaglia A. A combined approach of infrared spectroscopy and multivariate analysis for the simultaneous determination of sugars and fructans in strawberry juices during storage. J Food Sci. 2018;83(3):631–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Vongsvivut J, Heraud P, Gupta A, Puri M, McNaughton D, Barrow CJ. FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists. Analyst. 2013;138(20):6016–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Amessis-Ouchemoukh N, Ouchemoukh S, Meziant N, Idiri Y, Hernanz D, Stinco CM, Rodríguez-Pulido FJ, Heredia FJ, Madani K, Luis J. Bioactive metabolites involved in the antioxidant, anticancer and anticalpain activities of Ficus carica L., Ceratonia siliqua L. and Quercus ilex L. extracts. Ind Crops Prod. 2017;95:6–17.

    CAS  Article  Google Scholar 

  53. 53.

    Masek A, Chrzescijanska E, Kosmalska A, Zaborski M. Characteristics of compounds in hops using cyclic voltammetry, UV–VIS, FTIR and GC–MS analysis. Food Chem. 2014;156:353–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Hssaini L, Charafi J, Hanine H, Ennahli S, Mekaoui A, Mamouni A, Razouk R. Comparative analysis and physio-biochemical screening of an ex-situ fig (Ficus carica L.) collection. Hortic Environ Biotechnol. 2019;60(5):671–83.

    CAS  Article  Google Scholar 

  55. 55.

    Khadhraoui M, Bagues M, Artés F, Ferchichi A. Phytochemical content, antioxidant potential, and fatty acid composition of dried Tunisian fig (Ficus carica L.) cultivars. J Appl Bot Food Qual. 2019;92:143–50.

    CAS  Google Scholar 

  56. 56.

    Ladhari A, Gaaliche B, Zarrelli A, Ghannem M, Mimoun MB. Allelopathic potential and phenolic allelochemicals discrepancies in Ficus carica L. cultivars. S Afr J Bot. 2020;130:30–44.

    CAS  Article  Google Scholar 

  57. 57.

    Al-Musayeib N, Ebada SS, Gad HA, Youssef FS, Ashour ML. Chemotaxonomic diversity of three Ficus species: their discrimination using chemometric analysis and their role in combating oxidative stress. Pharmacogn Mag. 2017;13(Sup 3):S613.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Soltana H, Tekaya M, Amri Z, El-Gharbi S, Nakbi A, Harzallah A, Mechri B, Hammami M. Characterization of fig achenes’ oil of Ficus carica grown in Tunisia. Food Chem. 2016;196:1125–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Jeong WS, Lachance PA. Phytosterols and fatty acids in fig (Ficus carica, var. Mission) fruit and tree components. J Food Sci. 2001;66(2):278–81.

    CAS  Article  Google Scholar 

  60. 60.

    Hssaini L, Razouk R, Charafi J, Houmanat K, Hanine H. Fig seeds: combined approach of lipochemical assessment using gas chromatography and FTIR-ATR spectroscopy using chemometrics. Vib Spectrosc. 2021;114:103251.

  61. 61.

    Alzahrani HR, Kumakli H, Ampiah E, Mehari T, Thornton AJ, Babyak CM, Fakayode SO. Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values. Arab J Chem. 2017;10(7):906–13.

    CAS  Article  Google Scholar 

  62. 62.

    Oyeyinka BO, Afolayan AJ. Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) fruit compartments. Plants. 2019;8(12):598.

    CAS  PubMed Central  Article  PubMed  Google Scholar 

Download references

Acknowledgements

FTIR analysis was carried out in the central research laboratory of the National School of Agriculture (ENA) of Meknes-Morocco.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lahcen Hssaini.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hssaini, L., Ouaabou, R., Razouk, R. et al. ATR–FTIR Spectroscopy Combined with the Invitro Antioxidant Activity and Chromaticity for Rapid Discrimination of Fig (Ficus carica L.) Cultivars. J. Anal. Test. (2021). https://doi.org/10.1007/s41664-021-00189-6

Download citation

Keywords

  • Chemometrics
  • FTIR–ATR
  • Ficus carica L.
  • Half maximal inhibitory concentration
  • Multivariate analysis