Skip to main content
Log in

Trace Analysis of Anions in Perfluorodecalin by Green Liquid–Liquid Extraction Combined with Ion Chromatography

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Perfluoronaphthenes, with inert chemical and biological properties and ability to dissolve large amounts of oxygen, have received the most attention in medical applications. However, the excessive anion contained may cause some side effects. Herein, liquid–liquid extraction technique with shaking and ultrasonic extraction was used for the trace analysis of five anions (F, Cl, NO3, PO43−, SO42−) in perfluorodecalin using water as green extractant. The optimum pretreatment technology and ion chromatography detection conditions were established. Good linearity was observed in each concentration range, and the linear correlation coefficient (R2) was better than 0.997. The limits of detection (S/N = 3) of five anions from perfluorodecalin were 3.2, 5.5, 14.2, 23.2 and 29.5 μg/L, respectively. The established method with high sensitivity and accuracy has been successfully appliedfor the determination of five anions in three perfluorodecalin products, which provides a basis for further development of green detection and quality standard formulation in perfluorodecalin and other fluorocarbon solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. O’Hagan D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem Soc Rev. 2008;37(2):308–19.

    Article  Google Scholar 

  2. Castro CI, Briceno JC. Perfluorocarbon-based oxygen carriers: review of products and trials. Artif Organs. 2010;34(8):622–34.

    PubMed  Google Scholar 

  3. Lambert E, Gorantla VS, Janjic JM. Pharmaceutical design and development of perfluorocarbon nanocolloids for oxygen delivery in regenerative medicine. Nanomedicine. 2019;14(20):2697–712.

    Article  CAS  Google Scholar 

  4. Gao M, Liang C, Song XJ, Chen Q, Jin QT, Wang C, Liu Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv Mater. 2017;29(35):1701429.

    Article  Google Scholar 

  5. Pilarek M, Glazyrina J, Neubauer P. Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures. Microb Cell Fact. 2011;10(1):1–9.

    Article  Google Scholar 

  6. Cheng YH, Cheng H, Jiang CX, Qiu XF, Wang KK, Huan W, Yuan A, Wu JH, Hu YQ. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat Commun. 2015;6(1):8785.

    Article  CAS  Google Scholar 

  7. Tamimi F, Comeau P, Le Nihouannen D, Zhang YL, Bassett DC, Khalili S, Gbureck U, Tran SD, Komarova S, Barralet JE. Perfluorodecalin and bone regeneration. Eur Cells Mater. 2013;25:22–36.

    Article  CAS  Google Scholar 

  8. Lim YT, Cho MY, Kang JH, Noh YW, Cho JH, Hong KS, Chung JW, Bong HC. Perfluorodecalin/ InGaP/ZnS quantum dots nanoemulsions as F-19 MR/optical imaging nanoprobes for the labeling of phagocytic and nonphagocytic immune cells. Biomaterials. 2010;31(18):4964–71.

    Article  CAS  Google Scholar 

  9. Johnson JLH, Dolezal MC, Kerschen A, Matsunaga TO, Unger EC. In vitro comparison of dodecafluoropentane (DDFP), perfluorodecalin (PFD), and perfluoroctylbromide (PFOB) in the facilitation of oxygen exchange. Artif Cells Blood Substit Biotechnol. 2009;37(4):156–62.

    Article  CAS  Google Scholar 

  10. Murgia X, Mielgo V, Valls-i-Soler A, Ruiz-del-Yerro E, Rey-Santano C. Aerosolized perfluorocarbon improves gas exchange and pulmonary mechanics in preterm lambs with severe respiratory distress syndrome. Pediatr Res. 2012;72(4):393–9.

    Article  CAS  Google Scholar 

  11. Fraker CA, Mendez AJ, Inverardi L, Ricordi C, Stabler CL. Optimization of perfluoro nano-scale emulsions: the importance of particle size for enhanced oxygen transfer in biomedical applications. Colloids Surf B Biointerfaces. 2012;98:26–35.

    Article  CAS  Google Scholar 

  12. Hu LM, Zhang GS, Liu M, Wang Q, Wang P. Enhanced degradation of bisphenol A (BPA) by peroxymonosulfate with Co3O4-Bi2O3 catalyst activation: effects of pH, inorganic anions, and water matrix. Chem Eng J. 2018;338:300–10.

    Article  CAS  Google Scholar 

  13. Li NX, Tao SX, Chen YH, Niu XX, Onwudinanti CK, Hu C, Qiu ZW, Xu ZQ, Zheng GHJ, Wang LG, Zhang Y, Li L, Liu HF, Lun YZ, Hong JW, Wang XY, Liu YQ, Xie HP, Gao YL, Bai Y, Yang SH, Brocks G, Chen Q, Zhou HP. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy. 2019;4(5):408–15.

    Article  CAS  Google Scholar 

  14. Mironyuk IF, Gun’ko VM, Vasylyeva HV, Goncharuk OV, Tatarchuk TR, Mandzyuk VI, Bezruka NA, Dmytrotsa TV. Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous Mesoporous Mater. 2019;277:95–104.

    Article  CAS  Google Scholar 

  15. Cerjan Stefanović Š, Bolanča T, Ćurković L. Simultaneous determination of six inorganic anions in drinking water by non-suppressed ion chromatography. J Chromatogr A. 2001;918(2):325–34.

    Article  Google Scholar 

  16. Adurty S, Karnam L, Chittor SN, Belliraj SK. Optical sensing of fluoride through a self-organized fluorescent ensemble of quinizarin-Al(III) complex. J AOAC Int. 2016;99(6):1636–41.

    Article  CAS  Google Scholar 

  17. Trombella BE, Caputi A, Musso D, Ribeiro A, Ryan T. Determination of fluoride in wine by fluoride selective ion electrode, standard addition method: collaborative study. J AOAC Int. 2003;86(6):1203–7.

    Article  CAS  Google Scholar 

  18. Licata P, Naccari F, Di Bella G, Lo Turco V, Martorana V, Dugo GM. Inorganic anions in goat and ovine milk from Calabria (Italy) by suppressed ion chromatography. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2013;30(3):458–65.

    Article  CAS  Google Scholar 

  19. Idrees M, Ayaz M, Bibi R, Khan MN. Fluorescence quenching of the probes L-tryptophan and indole by anions in aqueous system. Anal Sci. 2020;36(2):183–5.

    Article  CAS  Google Scholar 

  20. Yoshii S, Mori M, Kozaki D, Hosokawa T, Itabashi H. Utilization of anion-exchange guard column as an ion chromatographic column of anions including application to simultaneous separation of anions and cations. Anal Sci. 2019;35(10):1117–22.

    Article  CAS  Google Scholar 

  21. Akter F, Saito S, Tasaki-Handa Y, Shibukawa M. Partition/ion-exclusion chromatographic ion stacking for the analysis of trace anions in water and salt samples by ion chromatography. Anal Sci. 2018;34(3):369–73.

    Article  CAS  Google Scholar 

  22. Gomez-Ordonez E, Alonso E, Ruperez P. A simple ion chromatography method for inorganic anion analysis in edible seaweeds. Talanta. 2010;82(4):1313–7.

    Article  CAS  Google Scholar 

  23. Zivojinovic DZ, Rajakovic LV. Application and validation of ion chromatography for the analysis of power plants water: analysis of corrosive anions in conditioned water-steam cycles. Desalination. 2011;275(1–3):17–25.

    Article  CAS  Google Scholar 

  24. Meng HB, Wang TR, Guo BY, Hashi Y, Guo CX, Lin JM. Simultaneous determination of inorganic anions and cations in explosive residues by ion chromatography. Talanta. 2008;76(2):241–5.

    Article  CAS  Google Scholar 

  25. Gros N, Camoes MF, Oliveira C, Silva MCR. Ionic composition of seawaters and derived saline solutions determined by ion chromatography and its relation to other water quality parameters. J Chromatogr A. 2008;1210(1):92–8.

    Article  CAS  Google Scholar 

  26. El Haddad M, Mamouni R, Ridaoui M, Lazar S. Rapid simultaneous analysis of oxyhalides and inorganic anions in aqueous media by ion exchange chromatography with indirect UV detection. J Saudi Chem Soc. 2015;19(1):108–11.

    Article  Google Scholar 

  27. Liu YQ, Yu H. Applications of ion chromatography in analysis of ionic liquid anions and cations. J Anal Testing. 2015;34(6):734–43.

    CAS  Google Scholar 

  28. Dzakovich MP, Gas-Pascual E, Orchard CJ, Sari EN, Riedl KM, Schwartz SJ, Francis DM, Cooperstone JL. Analysis of tomato carotenoids: comparing extraction and chromatographic methods. J AOAC Int. 2019;102(4):1069–79.

    Article  CAS  Google Scholar 

  29. Li Q, Jiang LY, Zhang H, Wei MM, Chu C, Yan JZ. Modified magnetic nanoparticle-based solid-phase extraction for the determination of trace amounts of aflatoxins B-1 and B-2 in Chinese patent medicines: the use of fupuganmao granules as a case study. J AOAC Int. 2019;102(3):761–6.

    Article  CAS  Google Scholar 

  30. Alu’datt MH, Alli I, Nagadi M. Preparation, characterization and properties of whey-soy proteins co-precipitates. Food Chem. 2012;134(1):294–300.

    Article  Google Scholar 

  31. Zokaei M, Abedi AS, Kamankesh M, Shojaee-Aliababadi S, Mohammadi A. Ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples. Food Chem. 2017;234:55–61.

    Article  CAS  Google Scholar 

  32. Ma L, Wang L, Tang J, Yang ZG. Optimization of arsenic extraction in rice samples by Plackett-Burman design and response surface methodology. Food Chem. 2016;204:283–8.

    Article  CAS  Google Scholar 

  33. Campos AF, Cassella RJ. Development of an extraction method for the determination of inorganic anions (chloride, sulfate and phosphate) in edible oils from different origins by ion chromatography. J Food Sci Technol (Mysore). 2018;55(10):3922–9.

    Article  CAS  Google Scholar 

  34. Nayak A, Bhushan B, Rosales A, Turienzo LR, Cortina JL. Valorisation potential of cabernet grape pomace for the recovery of polyphenols: process intensification, optimisation and study of kinetics. Food Bioprod Process. 2018;109:74–85.

    Article  CAS  Google Scholar 

  35. Talebi SM, Abedi M. Determination of atmospheric concentrations of inorganic anions by ion chromatography following ultrasonic extraction. J Chromatogr A. 2005;1094(1–2):118–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zibo Key Scientific Research program (2019gy010020) and the Jinan Customs Science and Technology Plan (2020JK012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Lv or Li-Tao Wang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xu, J., Lu, Y. et al. Trace Analysis of Anions in Perfluorodecalin by Green Liquid–Liquid Extraction Combined with Ion Chromatography. J. Anal. Test. 6, 346–351 (2022). https://doi.org/10.1007/s41664-021-00187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00187-8

Keywords

Navigation