Skip to main content
Log in

Rapid Determination of Endogenous 20-Hydroxyecdysone in Plants on MALDI-TOF/TOF Mass Spectrometry via Chemical Labeling Based on Boronate Affinity

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

20-Hydroxyecdysone (20E) derived from plants has a wide range of physiological and pharmacological effects on animals and humans, and rapid and sensitive methods for screening of the endogenous 20E in plants are thus required. Herein, a matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) method is described for rapid and sensitive determination of endogenous 20E in plants. It is based on the use of the (3-(acridin-9-ylamino) phenyl) boronic acid (AYPBA) as the mass tag to assist the MS and tandem MS (MSn) analysis of 20E on MALDI-TOF/TOF MS. Good linearity was obtained with a determination coefficient (R2) larger than 0.99 in the range of 0.025–2.5 μΜ. The limit of detection (LOD) was 2.4 fmol. Acceptable precision and accuracy were gained by intra- and inter-day analysis with relative standard deviations less than 19.5% and relative recoveries ranging from 85.7 to 105.2%. In addition, the AYPBA labeled 20E produced abundant characteristic fragment ions under the high energy collision-induced dissociation, which facilitated the identification of 20E by MS2 analysis on MALDI-TOF/TOF MS. Using the method, we enabled the identification and quantification of endogenous 20E in four herbs including Cyanotis arachoidea, Achyranthes bidentata, Spinacia oleracea and Chenopodium quinoa willd., demonstrating the feasibility of the proposed method for screening of the endogenous 20E in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Jing YP, Wang D, Han XL, Dong DJ, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone enhances gene transcription through the cAMP response element-binding protein (CREB) signaling pathway. J Biol Chem. 2016;291:12771–85.

    Article  CAS  Google Scholar 

  2. Báthori M, Tóth N, Hunyadi A, Márki A, Zádor E. Phytoecdysteroids and anabolic-androgenic steroids-structure and effects on humans. Curr Med Chem. 2008;15:75–91.

    Article  Google Scholar 

  3. Ramazanov NS. Phytoecdysteroids and other biologically active compounds from plants of the Genus Ajuga. Chem Nat Compd. 2005;41:361–9.

    Article  CAS  Google Scholar 

  4. Kang XL, Zhang JY, Wang D, Zhao YM, Han XL, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genet. 2019;15:e1008331.

    Article  CAS  Google Scholar 

  5. Kizelsztein P, Govorko D, Komarnytsky S, Evans A, Wang Z, Cefalu W, Raskin I. 20-Hydroxyecdysone decreases weight and hyperglycemia in a diet-induced obesity mice model. Am J Physiol Endocrinol Metab. 2009;296:433–9.

    Article  Google Scholar 

  6. Kholodova YD. Phytoecdysteroids: biological effects, application in agriculture and complementary medicine. Ukr Biokhim Zh. 2001;73:21–9.

    CAS  Google Scholar 

  7. Dinan L. The karlson lecture. Phytoecdysteroids: what use are they? Arch Insect Biochem Physiol. 2009;72:126–41.

    Article  CAS  Google Scholar 

  8. Bathori M, Pongracz Z. Phytoecdysteroids-from isolation to their effects on humans. Curr Med Chem. 2005;12:153–72.

    Article  CAS  Google Scholar 

  9. Parr MK, Botre F, Nass A, Hengevoss J, Diel P, Wolber G. Ecdysteroids: a novel class of anabolic agents. Biol Sport. 2015;32:169–73.

    Article  CAS  Google Scholar 

  10. Isenmann E, Ambrosio G, Joseph JF, Mazzarino M, Torre X, Zimmer P, Kazlauskas R, Goebel C, Botrè F, Diel P, Parr MK. Ecdysteroids as non-conventional anabolic agent: performance enhancement by ecdysterone supplementation in humans. Arch Toxicol. 2019;93:1807–16.

    Article  CAS  Google Scholar 

  11. Zhou JH, Qi YT, Hou YL, Zhao J, Li Y, Xue XF, Wu LM, Zhang JZ, Chen F. Quantitative determination of juvenile hormone III and 20-hydroxyecdysone in queen larvae and drone pupae of Apis mellifera by ultrasonic-assisted extraction and liquid chromatography with electrospray ionization tandem mass spectrometry. J Chromatogr B. 2011;879:2533–41.

    Article  CAS  Google Scholar 

  12. Mazzella N, Delmas F, Delest B, Mechin B, Madigou C, Allenou JP, Gabellec R, Caquet T. Investigation of the matrix effects on a HPLC-ESI-MS/MS method and application for monitoring triazine, phenylurea and chloroacetanilide concentrations in fresh and estuarine waters. J Environ Monit. 2009;11:108–15.

    Article  CAS  Google Scholar 

  13. Li Y, Warren JT, Boysen G, Gilbert LI, Gold A, Sangaiah R, Ball LM, Swenberg JA. Profiling of ecdysteroids in complex biological samples using liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:185–92.

    Article  CAS  Google Scholar 

  14. Venne P, Yargeau V, Segura PA. Quantification of ecdysteroids and retinoic acids in whole daphnids by liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr A. 2016;1438:57–64.

    Article  CAS  Google Scholar 

  15. Oliveira J, Alhinho da Silva M, Teixeira N, Freitas VD, Salas E. Screening of anthocyanins and anthocyanin-derived pigments in red wine grape pomace using LC-DAD/MS and MALDI-TOF techniques. J Agric Food Chem. 2015;63:7636–44.

    Article  CAS  Google Scholar 

  16. Gallo M, Ferranti P. The evolution of analytical chemistry methods in foodomics. J Chromatogr A. 2016;1428:3–15.

    Article  CAS  Google Scholar 

  17. Destrez B, Pinel G, Monteau F, Lafont R, Le Bizec B. Detection and identification of 20-hydroxyecdysone metabolites in calf urine by liquid chromatography-high resolution or tandem mass spectrometry measurements and establishment of their kinetics of elimination after 20-hydroxyecdysone administration. Anal Chim Acta. 2009;637:178–84.

    Article  CAS  Google Scholar 

  18. Kamlar M, Rothova O, Salajkova S, Tarkowska D, Drasar P, Kocova M, Harmatha J, Hola D, Kohout L, Macek T. The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L. Steroids. 2015;97:107–12.

    Article  CAS  Google Scholar 

  19. Rush MD, Rue EA, Wong A, Kowalski P, Glinski JA, van Breemen RB. Rapid determination of procyanidins using MALDI-TOF/TOF mass spectrometry. J Agric Food Chem. 2018;66:11355–61.

    Article  CAS  Google Scholar 

  20. Yan Y, Ubukata M, Cody RB, Holy TE, Gross ML. High-energy collision-induced dissociation by MALDI TOF/TOF causes charge-remote fragmentation of steroid sulfates. J Am Soc Mass Spectrom. 2014;25:1404–11.

    Article  CAS  Google Scholar 

  21. Shroff R, Rulísek L, Doubsky J, Svatos A. Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc Natl Acad Sci USA. 2009;106:10092–6.

    Article  Google Scholar 

  22. Qi BL, Liu P, Wang QY, Cai WJ, Yuan BF, Feng YQ. Derivatization for liquid chromatography-mass spectrometry. TrAC Trends Anal Chem. 2014;59:121–32.

    Article  CAS  Google Scholar 

  23. van Kampen JJ, Burgers PC, de Groot R, Gruters RA, Luider TM. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom Rev. 2011;30:101–20.

    Article  Google Scholar 

  24. Ding J, Xiao HM, Liu S, Wang C, Liu X, Feng YQ. A matrix-assisted laser desorption/ionization mass spectroscopy method for the analysis of small molecules by integrating chemical labeling with the supramolecular chemistry of cucurbituril. Anal Chim Acta. 2018;1026:77–86.

    Article  CAS  Google Scholar 

  25. Wu P, Xiao HM, Ding J, Deng QY, Zheng F, Feng YQ. Development of C60-based labeling reagents for the determination of low-molecular-weight compounds by matrix assisted laser desorption ionization mass (I): determination of amino acids in microliter biofluids. Anal Chim Acta. 2017;960:90–100.

    Article  CAS  Google Scholar 

  26. Zhang Y, Wang B, Jin WJ, Wen YN, Nan LJ, Yang MM, Liu RD, Zhu YY, Wang CJ, Huang LJ, Song XZ, Wang ZF. Sensitive and robust MALDI-TOF-MS glycomics analysis enabled by Girard’s reagent T on-target derivatization (GTOD) of reducing glycans. Anal Chim Acta. 2019;1048:105–14.

    Article  CAS  Google Scholar 

  27. Wang SS, Wang YJ, Zhang J, Sun TQ, Guo YL. Derivatization strategy for simultaneous molecular imaging of phospholipids and low-abundance free fatty acids in thyroid cancer tissue sections. Anal Chem. 2019;91:4070–6.

    Article  CAS  Google Scholar 

  28. Waldchen F, Spengler B, Heiles S. Reactive matrix-assisted laser desorption/ionization mass spectrometry imaging using an intrinsically photoreactive paterno-buchi matrix for double-bond localization in isomeric phospholipids. J Am Chem Soc. 2019;141:11816–20.

    Article  Google Scholar 

  29. Cai WJ, Yu L, Wang W, Sun MX, Feng YQ. Simultaneous determination of multiclass phytohormones in submilligram plant samples by one-pot multifunctional derivatization-assisted liquid chromatography-tandem mass spectrometry. Anal Chem. 2019;91:3492–9.

    Article  CAS  Google Scholar 

  30. Yu L, Cai WJ, Ye TT, Feng YQ. A new boronic acid reagent for the simultaneous determination of C27-, C28-, and C29-brassinosteroids in plant tissues by chemical labeling-assisted liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2019;411:1623–32.

    Article  CAS  Google Scholar 

  31. Chen YS, Xiao HM, Wang TQ, Yu L, Feng YQ. A boronic acid modified binary matrix consisting of boron nitride and alpha-cyano-4-hydroxycinnamic acid for determination of cis-diols by MALDI-TOF MS. Microchim Acta. 2019;186:591–8.

    Article  CAS  Google Scholar 

  32. Huo FF, Wang X, Han YH, Bai Y, Zhang W, Yuan HC, Liu HW. A new derivatization approach for the rapid and sensitive analysis of brassinosteroids by using ultra high performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry. Talanta. 2012;99:420–5.

    Article  CAS  Google Scholar 

  33. Muhammad S, Sara M, Naheed R, Momina Z, Muhammad A, Rumana N, Abdul J. Ecdysteroids from the flowers of Aerva javanica. Steroids. 2013;78:1098–102.

    Article  Google Scholar 

  34. Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem. 2018;410:4015–38.

    Article  CAS  Google Scholar 

  35. Lavrynenko O, Nedielkov R, Möller HM, Shevchenko A. Girard derivatization for LC-MS/MS profiling of endogenous ecdysteroids in Drosophila. J Lipid Res. 2013;54:2265–72.

    Article  CAS  Google Scholar 

  36. Zhao BT, Jeong SY, Moon DC, Son KH, Son JK, Woo MH. High performance liquid chromatography used for quality control of Achyranthis Radix. Arch Pharm Res. 2012;35:1449–55.

    Article  CAS  Google Scholar 

  37. Li J, Li HJ, Li P, Qi H. Simultaneous qualitation and quantification of four phytoecdysones in Radix Achyranthis Bidentatae by high-performance liquid chromatography with diode array detection. Biomed Chromatogr. 2007;21:823–8.

    Article  CAS  Google Scholar 

  38. Rothova O, Hola D, Kocova M, Tumova L, Hnilicka F, Hnilickova H, Kamlar M, Macek T. 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids. 2014;85:44–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFC0906800) and the National Natural Science Foundation of China (21635006, 31670373 and 21721005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qi Feng.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1576 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YS., Feng, YQ. Rapid Determination of Endogenous 20-Hydroxyecdysone in Plants on MALDI-TOF/TOF Mass Spectrometry via Chemical Labeling Based on Boronate Affinity. J. Anal. Test. 6, 318–326 (2022). https://doi.org/10.1007/s41664-021-00179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-021-00179-8

Keywords

Navigation