A New Anti-counterfeiting Feature Relying on Invisible Non-toxic Fluorescent Carbon Dots

Abstract

Fluorescent patterning has attracted a great deal of attention owing to its potential applications in different areas in particular anti-counterfeiting technology. Fluorescent carbon dots (CDs) as a type of fluorescent dyes can be used in invisible patterning due to their remarkable optical properties. This study attempts to introduce green fluorescent CDs as a promising factor in textile coding. Accordingly, a new green source opted to prepare CDs using the hydrothermal approach. Moreover, toxicity assays were performed to prove the safety of these carbon-based nanoparticles for humanity. They were also conjugated with cotton fiber successfully. Therefore, these green prepared CDs are promising for security labeling in the textile industry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Jiang K, Wang Y, Cai C, Lin H. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv Mater. 2018;30(26):1800783.

    Google Scholar 

  2. 2.

    Andres J, Hersch RD, Moser JE, Chauvin AS. A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks. Adv Funct Mater. 2014;24(32):5029–36.

    CAS  Google Scholar 

  3. 3.

    Yoon B, Lee J, Park IS, Jeon S, Lee J, Kim J-M. Recent functional material based approaches to prevent and detect counterfeiting. J Mater Chem C Mater. 2013;1(13):2388–403.

    CAS  Google Scholar 

  4. 4.

    Roberts CM. Radio frequency identification (RFID). Comput Secur. 2006;25(1):18–26.

    Google Scholar 

  5. 5.

    Huang S, Wu JK. Optical watermarking for printed document authentication. IEEE Trans Inform Forensic Secur. 2007;2(2):164–73.

    Google Scholar 

  6. 6.

    Han S, Bae HJ, Kim J, Shin S, Choi SE, Lee SH, et al. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs. Adv Mater. 2012;24(44):5924–9.

    CAS  PubMed  Google Scholar 

  7. 7.

    Niu N, Yang P, He F, Zhang X, Gai S, Li C, et al. Tunable multicolor and bright white emission of one-dimensional NaLuF 4: Yb 3+, Ln 3+(Ln = Er, Tm, Ho, Er/Tm, Tm/Ho) microstructures. J Mater Chem. 2012;22(21):10889–99.

    CAS  Google Scholar 

  8. 8.

    Chang K, Liu Z, Chen H, Sheng L, Zhang SXA, Chiu DT, et al. Conjugated polymer dots for ultra-stable full-color fluorescence patterning. Small. 2014;10(21):4270–5.

    CAS  PubMed  Google Scholar 

  9. 9.

    Wei S-C, Lin Y-W, Chang H-T. Carbon dots as artificial peroxidases for analytical applications. J Anal Test. 2019;3:191–205.

    Google Scholar 

  10. 10.

    Geng F, Zhao L, Kang Y, Guo L-H. Unprecedented two-step chemiluminescence of polyamine-functionalized carbon nanodots induced by fenton-like system. J Anal Test. 2017;1(4):315–21.

    Google Scholar 

  11. 11.

    Li X, Shi L, Li L, Dong C, Li C-Z, Shuang S. Recent advances in carbon nanodots: properties and applications in cancer diagnosis and treatment. J Anal Test. 2019;3(1):37–49.

    Google Scholar 

  12. 12.

    Puvvada N, Kumar BP, Konar S, Kalita H, Mandal M, Pathak A. Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications. Sci Technol Adv Mater. 2012;13(4):045008.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Prabhakar N, Näreoja T, von Haartman E, Karaman DŞ, Burikov SA, Dolenko TA, et al. Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging. Nanoscale. 2015;7(23):10410–20.

    CAS  PubMed  Google Scholar 

  14. 14.

    Cao L, Sahu S, Anilkumar P, Bunker CE, Xu J, Fernando KS, et al. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J Am Chem Soc. 2011;133(13):4754–7.

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhao HX, Liu LQ, De Liu Z, Wang Y, Zhao XJ, Huang CZ. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chem Commun. 2011;47(9):2604–6.

    CAS  Google Scholar 

  16. 16.

    Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed. 2013;52(14):3953–7.

    CAS  Google Scholar 

  17. 17.

    Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed. 2012;51(49):12215–8.

    CAS  Google Scholar 

  18. 18.

    Li H, Kang Z, Liu Y, Lee S-T. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22(46):24230–53.

    CAS  Google Scholar 

  19. 19.

    Fatahi Z, Esfandiari N, Ehtesabi H, Bagheri Z, Tavana H, Ranjbar Z, et al. Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging. EXCLI J. 2019;18:454–66.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Ashrafi Tafreshi F, Fatahi Z, Ghasemi SF, Taherian A, Esfandiari N. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS ONE. 2020;15(3):e0230646.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mao X-J, Zheng H-Z, Long Y-J, Du J, Hao J-Y, Wang L-L, et al. Study on the fluorescence characteristics of carbon dots. Spectrochim Acta A Mol Biomol Spectrosc. 2010;75(2):553–7.

    PubMed  Google Scholar 

  22. 22.

    Hu S, Wei Z, Chang Q, Trinchi A, Yang J. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. Appl Surf Sci. 2016;378:402–7.

    CAS  Google Scholar 

  23. 23.

    Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B. 2017;5(45):8904–24.

    CAS  PubMed  Google Scholar 

  24. 24.

    Hu S-L, Niu K-Y, Sun J, Yang J, Zhao N-Q, Du X-W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem. 2009;19(4):484–8.

    CAS  Google Scholar 

  25. 25.

    Ding H, Yu S-B, Wei J-S, Xiong H-M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 2016;10(1):484–91.

    CAS  PubMed  Google Scholar 

  26. 26.

    Minh TuN, Thanh L, Une A, Ukeda H, Sawamura M. Volatile constituents of Vietnamese pummelo, orange, tangerine and lime peel oils. Flavour Fragr J. 2002;17(3):169–74.

    Google Scholar 

  27. 27.

    Dubey P, Tripathi KM, Sonkar SK. Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Adv. 2014;4(12):5838–44.

    CAS  Google Scholar 

  28. 28.

    Ding H, Wei J-S, Xiong H-M. Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale. 2014;6(22):13817–23.

    CAS  PubMed  Google Scholar 

  29. 29.

    Sharma A, Gadly T, Gupta A, Ballal A, Ghosh SK, Kumbhakar M. Origin of excitation dependent fluorescence in carbon nanodots. J Phys Chem Lett. 2016;7(18):3695–702.

    CAS  PubMed  Google Scholar 

  30. 30.

    Ding H, Ji Y, Wei J-S, Gao Q-Y, Zhou Z-Y, Xiong H-M. Facile synthesis of red-emitting carbon dots from pulp-free lemon juice for bioimaging. J Mater Chem B. 2017;5(26):5272–7.

    CAS  PubMed  Google Scholar 

  31. 31.

    Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22(6):734–8.

    PubMed  Google Scholar 

  32. 32.

    Wei L, Ma Y, Shi X, Wang Y, Su X, Yu C, et al. Living cell intracellular temperature imaging with biocompatible dye-conjugated carbon dots. J Mater Chem B. 2017;5(18):3383–90.

    CAS  PubMed  Google Scholar 

  33. 33.

    Mehta VN, Chettiar SS, Bhamore JR, Kailasa SK, Patel RM. Green synthetic approach for synthesis of fluorescent carbon dots for lisinopril drug delivery system and their confirmations in the cells. J Fluoresc. 2017;27(1):111–24.

    CAS  PubMed  Google Scholar 

  34. 34.

    Bandi R, Dadigala R, Gangapuram BR, Guttena V. Green synthesis of highly fluorescent nitrogen–doped carbon dots from Lantana camara berries for effective detection of lead (II) and bioimaging. J Photochem Photobiol B: Biol. 2018;178:330–8.

    CAS  Google Scholar 

  35. 35.

    Zhang J, Shen W, Pan D, Zhang Z, Fang Y, Wu M. Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose. New J Chem. 2010;34(4):591–3.

    CAS  Google Scholar 

  36. 36.

    Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P. Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2012;2(9):3602–6.

    CAS  Google Scholar 

  37. 37.

    Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun. 2012;48(70):8835–7.

    CAS  Google Scholar 

  38. 38.

    Gao Z, Wang L, Su R, Huang R, Qi W, He Z. A carbon dot-based “off–on” fluorescent probe for highly selective and sensitive detection of phytic acid. Biosens Bioelectron. 2015;70:232–8.

    CAS  PubMed  Google Scholar 

  39. 39.

    Esfandiari N, Bagheri Z, Ehtesabi H, Fatahi Z, Tavana H, Latifi H. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon. 2019;5(12):e02940.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad TS, et al. Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B. 2016;4(45):7204–19.

    CAS  PubMed  Google Scholar 

  41. 41.

    Laptinskiy KA, Burikov SA, Patsaeva SV, Vlasov II, Shenderova OA, Dolenko TA. Absolute luminescence quantum yield for nanosized carbon particles in water as a function of excitation wavelength. Spectrochim Acta A Mol Biomol Spectrosc. 2020;229:117879.

    CAS  PubMed  Google Scholar 

  42. 42.

    Li Z, Zhang Y, Niu Q, Mou M, Wu Y, Liu X, et al. A fluorescence probe based on the nitrogen-doped carbon dots prepared from orange juice for detecting Hg2+ in water. J Lumin. 2017;187:274–80.

    CAS  Google Scholar 

  43. 43.

    Alam A-M, Park B-Y, Ghouri ZK, Park M, Kim H-Y. Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chem. 2015;17(7):3791–7.

    CAS  Google Scholar 

  44. 44.

    Esfandiari N. Targeting breast cancer with bio-inspired virus nanoparticles. ABC. 2018;5(2):90–5.

    Google Scholar 

  45. 45.

    Nurunnabi M, Khatun Z, Huh KM, Park SY, Lee DY, Cho KJ, et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 2013;7(8):6858–67.

    CAS  PubMed  Google Scholar 

  46. 46.

    Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014;35(19):5041–8.

    CAS  PubMed  Google Scholar 

  47. 47.

    Sachdev A, Gopinath P. Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst. 2015;140(12):4260–9.

    CAS  PubMed  Google Scholar 

  48. 48.

    Feng T, Zeng Q, Lu S, Yan X, Liu J, Tao S, et al. Color-tunable carbon dots possessing solid-state emission for full-color light-emitting diodes applications. ACS Photonics. 2018;5(2):502–10.

    CAS  Google Scholar 

Download references

Acknowledgements

Special thanks go to Professor Vlasov Igor for supporting us with helpful comments that greatly improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neda Esfandiari.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fatahi, Z., Esfandiari, N. & Ranjbar, Z. A New Anti-counterfeiting Feature Relying on Invisible Non-toxic Fluorescent Carbon Dots. J. Anal. Test. 4, 307–315 (2020). https://doi.org/10.1007/s41664-020-00149-6

Download citation

Keywords

  • Green carbon dots
  • Cytotoxicity
  • Anti-counterfeiting
  • Cotton fiber