Development of Chromium(III)-selective Potentiometric Sensor by Using Synthesized Pyrazole Derivative as an Ionophore in PVC Matrix and its Applications

Abstract

A novel poly(vinyl chloride) membrane potentiometric sensor for chromium(III) ions based on the use of 5,5′-(1,4-phenylene)bis(3-(naphthalen-1-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide) as a neutral ionophore was developed. The optimum composition of the best performing membrane contained ionophore, potassium tetrakis (p-chlorophenyl) borate (KTpClPB), dibutyl phthalate (DBP), and poly(vinyl chloride) (PVC) in the ratio of 5.5:1.5:55:38 (mg). The sensor exhibits a working concentration range of 1.0 × 10–5–1.0 × 10–1 mol L−1 and a detection limit of 1.7 × 10–6 mol L−1. The sensor shows good selectivity for chromium(III) ions over a number of cations including alkali, alkaline earth, heavy and transition metals. The response time of the sensor is 8 s. In addition, the developed sensor shows good reusability and stability. The sensor operates in the wide pH range of 5.0–11.0. The sensor could be used as an indicator electrode in the quantification of Cr3+ ions by potentiometric titration against ethylenediaminetetraacetic acid (EDTA). Finally, this sensor was successfully used for the determination of chromium(III) in commercial water, purification water and wastewater.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Kumar P, Shim Y-B. Chromium(III)-selective electrode using p-(4-acetanilidazo)calix[4]arene as an ionophore in PVC matrix. Bull Korean Chem Soc. 2008;29:2471–6.

    CAS  Article  Google Scholar 

  2. 2.

    Lu J, Tian J, Wu H, Zhao C. Speciation determination of chromium(VI) and chromium(III) in soil samples after cloud point extraction. Anal Lett. 2009;42:1662–7.

    CAS  Article  Google Scholar 

  3. 3.

    Soomro R, Ahmed MJ, Memon N. Simple and rapid spectrophotometric determination of trace level chromium using bis (salicylaldehyde) orthophenylene diamine in nonionic micellar media. Turk J Chem. 2011;35:155–70.

    CAS  Google Scholar 

  4. 4.

    Mallah A, Memon SQ, Solangi AR, Khan A, Khuhawar MY, Bhanger MI. Separation and determination of chromium (III) chromium (VI), gold (III) and arsenic (V) by capillary zone electrophoresis using 2-acetylpyridine-4-phenylthiosemicarbazone as complexing reagent. J Chem Soc Pak. 2014;36:255–62.

    CAS  Google Scholar 

  5. 5.

    Zhao ZX, Zhang XS. Determination of trace amounts of chromium(III) in water samples using online flow injection catalytic spectrophotometry. J Appl Spectrosc. 2017;83:1084–8.

    CAS  Article  Google Scholar 

  6. 6.

    Mao J, He Q, Liu W. An, “off–on” fluorescence probe for chromium(III) ion determination in aqueous solution. Anal Bioanal Chem. 2010;396:1197–203.

    CAS  Article  Google Scholar 

  7. 7.

    Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G. Chromium(III)-selective sensor based on tri-o-thymotide in PVC matrix. Sensor Actuat B Chem. 2006;113:182–6.

    CAS  Article  Google Scholar 

  8. 8.

    Anthemidis NA, Zachariadis GA, Kougoulis JS, Strati JA. Flame atomic absorption spectrometric determination of chromium(VI) by on-line preconcentration system using a PTFE packed column. Talanta. 2002;57:15–22.

    CAS  Article  Google Scholar 

  9. 9.

    Taraba L, Krizek T, Kubickova A, Coufal P. Sample pretreatment for the capillary electrophoretic determination of organic acids in chromium(III) plating baths. J Sep Sci. 2015;38:4255–61.

    CAS  Article  Google Scholar 

  10. 10.

    Kumar P, Kumar S, Jain S, Lamba BY, Joshi G, Arora S. All solid state chromium(III) selective potentiometric sensor based on 2-(1-(2-((3-(2-hydroxyphenyl)-1H-pyrozol-1-yl)methyl)benzyl)-1H-pyrazol-3-yl)phenol. Electroanalysis. 2014;26:2161–7.

    CAS  Article  Google Scholar 

  11. 11.

    Tiglea P, Lichtig J. Determination of traces of chromium in foods by solvent extraction flame atomic absorption spectrometry. Anal Lett. 2000;33:1615–24.

    CAS  Article  Google Scholar 

  12. 12.

    Sun HW, Kang WJ, Liang SX, Ha J, Shen SG. Determination of chromium(III) and total chromium in water by derivative atomic absorption spectrometry using flow injection on-line preconcentration with a double microcolumn. Anal Sci. 2003;19:589–92.

    CAS  Article  Google Scholar 

  13. 13.

    Amin AS, Kassem MA. Chromium speciation in environmental samples using a solid phase spectrophotometric method. Spectrochim Acta. 2012;96:541–7.

    CAS  Article  Google Scholar 

  14. 14.

    Magini M. X-ray diffraction study of concentrated chromium (III) chloride solutions. I. Complex formation analysis in equilibrium conditions. J Chem Phys. 1980;73:2499–505.

    CAS  Article  Google Scholar 

  15. 15.

    Umesh B, Rajendran RM, Manoharan MT. Method for the determination of chromium in feed matrix by HPLC. Poult Sci. 2015;94:2805–15.

    CAS  Article  Google Scholar 

  16. 16.

    Zhu X, Hu B, Jiang Z, Wu Y, Xiong S. Speciation of chromium(III) and chromium(VI) by in situ separation and sequential determination with electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Anal Chim Acta. 2002;471:121–6.

    CAS  Article  Google Scholar 

  17. 17.

    Martínez-Gallegos S, Bulbulian S. Neutron activation analysis for chromium(III) and (VI) in lixiviated liquid through a calcined chromium(VI) adsorbed hydrotalcite. J Radioanal Nucl Chem. 2005;266:285–7.

    Article  Google Scholar 

  18. 18.

    Elmosallamy MAF, Fathy AM, Ghoneim AK. Lead(II) potentiometric sensor based on 1,4,8,11-tetrathiacyclotetradecane neutral carrier and lipophilic additives. Electroanalysis. 2008;20:1241–5.

    CAS  Article  Google Scholar 

  19. 19.

    Kumar P, Shim Y-B. A novel cobalt(II)-selective potentiometric sensor based on p-(4-n-butylphenylazo)calix[4]arene. Talanta. 2009;77:1057–62.

    CAS  Article  Google Scholar 

  20. 20.

    Isildak Ö, Özbek O. Application of potentiometric sensors in real samples. Crit Rev Anal Chem. 2020. https://doi.org/10.1080/10408347.2019.1711013.

    Article  PubMed  Google Scholar 

  21. 21.

    Isildak Ö, Deligönül N, Özbek O. A novel silver(I)-selective PVC membrane sensor and its potentiometric applications. Turk J Chem. 2019;43:1149–58.

    CAS  Article  Google Scholar 

  22. 22.

    Jiang C, Yao Y, Cai Y, Ping J. All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer. Sens Actuators B. 2019;283:284–9.

    CAS  Article  Google Scholar 

  23. 23.

    Özbek O, Isildak Ö, Berkel C. The use of porphyrins in potentiometric sensors as ionophores. J Incl Phenom Macrocycl Chem. 2020. https://doi.org/10.1007/s10847-020-01004-y.

    Article  Google Scholar 

  24. 24.

    Khairul WM, Abu Hasan MF, Daud AI, Zuki HM, Kubulat KH, Abdulkadir M. Theoretical and experimental investigation of pyridyl thiourea derivatives as ionophores for Cu(II) ion detection. Malays J Anal Sci. 2016;20:73–84.

    Article  Google Scholar 

  25. 25.

    Isildak Ö, Özbek O, Gürdere MB, Çetin A. Development of PVC membrane potentiometric sensor for the determination of potassium ion and its applications. Pamukkale Univ Muh Bilim Derg. 2020. https://doi.org/10.5505/pajes.2020.27982.

    Article  Google Scholar 

  26. 26.

    Gürdere MB, Özbek O, Ceylan M. Aluminum chloride–catalyzed C-alkylation of pyrrole and indole with chalcone and bis-chalcone derivatives. Synt Commun. 2016;46:322–31.

    Article  Google Scholar 

  27. 27.

    Ansari A, Ali A, Asif M. Review: biologically active pyrazole derivatives. New J Chem. 2017;41:16–411.

    CAS  Article  Google Scholar 

  28. 28.

    Gürdere MB, Kamo E, Budak Y, Sahin Yağlıoğlu A, Ceylan M. Synthesis and anticancer and cytotoxic effects of novel 1,4-phenylene-bis-N-thiocarbamoylpyrazole and 1,4-phenylene-bis-pyrazolylthiazole derivatives. Turk J Chem. 2017;41:179–89.

    Article  Google Scholar 

  29. 29.

    Isildak Ö, Özbek O, Yigit KM. Zinc(II)-selective PVC membrane potentiometric sensor for analysis of Zn2+ in drug sample and different environmental samples. Int J Environ Anal Chem. 2019. https://doi.org/10.1080/03067319.2019.1691542.

    Article  Google Scholar 

  30. 30.

    Isildak Ö, Özbek O. Silver(I)-selective PVC membrane potentiometric sensor based on 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine and potentiometric applications. J Chem Sci. 2020;132:29.

    CAS  Article  Google Scholar 

  31. 31.

    IUPAC. Recommendations for nomenclature of ion-selective electrodes. Pure Appl Chem. 1976;48:127–32.

  32. 32.

    Faridbod F, Ganjali MR, Dinarvand R, Norouzi P. The fabrication of potentiometric membrane sensors and their applications. Afr J Biotechnol. 2007;6:2960–87.

    CAS  Article  Google Scholar 

  33. 33.

    Ganjali MR, Mizani F, Salavati-Niasari M, Javanbakht M. Novel potentiometric membrane sensor for the determination of trace amounts of chromium(III) ions. Anal Sci. 2003;19:235–8.

    CAS  Article  Google Scholar 

  34. 34.

    Abbaspour A, Izadyar A. Chromium(III) ion-selective electrode based on 4-dimethylaminoazobenzene. Talanta. 2001;53:1009–133.

    CAS  Article  Google Scholar 

  35. 35.

    Gholivand MB, Sharifpour F. Chromium(III) ion selective electrode based on glyoxal bis(2-hydroxyanil). Talanta. 2003;60:707–13.

    CAS  Article  Google Scholar 

  36. 36.

    Kumar P, Sharma HK, Shalaan KG. Development of chromium(III) selective potentiometric sensor by using synthesized triazole derivative as an ionophore. J Chem. 2013;12:1–6.

    Google Scholar 

  37. 37.

    Ma YH, Yuan R, Chai YQ, Liu XL. Potentiometric membrane electrode for Cr(III) ion based on a new aryl amide bifunctional bridging ligand as a neutral carrier. J Chin Chem Soc. 2009;56:676–82.

    CAS  Article  Google Scholar 

  38. 38.

    Sharma RK, Goel A. Development of a Cr(III)-specific potentiometric sensor using Aurin tricarboxylic acid modified silica. Anal Chim Acta. 2015;534:137–42.

    Article  Google Scholar 

  39. 39.

    Youssef AFA, Issa YM, Mohamed MS. Carbon paste electrode modified with chromium thiopental for the potentiometric flow injection analysis of chromium (III). Toxicol Environ Chem. 2012;94:220–38.

    CAS  Article  Google Scholar 

  40. 40.

    Heidari Z, Masrournia M. A novel modified carbon paste electrode for the determination of chromium(III) in water. J Anal Chem. 2018;73:824–31.

    Article  Google Scholar 

  41. 41.

    Abu-Shawish HM, Saadeh SM, Hartani K, Dalloula HM. A comparative study of chromium(III) ion-selective electrodes based on N,N-Bis(salicylidene)-o-phenylenediaminatechromium(III). J Iran Chem Soc. 2009;6:729–37.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Research Assistant Caglar Berkel (Tokat Gaziosmanpasa University, Department of Molecular Biology and Genetics) and MSc student Alper Cetin for their contributions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ömer Isildak or Oguz Özbek.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isildak, Ö., Özbek, O. & Gürdere, M.B. Development of Chromium(III)-selective Potentiometric Sensor by Using Synthesized Pyrazole Derivative as an Ionophore in PVC Matrix and its Applications. J. Anal. Test. 4, 273–280 (2020). https://doi.org/10.1007/s41664-020-00147-8

Download citation

Keywords

  • PVC membrane
  • Chromium(III)-selective
  • Chromium determination
  • Sensor