Recent Advances of Electrochemiluminescent System in Bioassay

Abstract

Electrochemiluminescent (ECL) technique has drawn increasing attention in a myriad of applications ranging from clinic diagnosis to the environment and food monitoring. The advantages of ECL sensors include high sensitivity, negligible background, and excellent controllability with respect to its counterparts. The past 2 years have witnessed an impetus in the rise of a batch of luminophores and coreactants as advanced materials to boost the ECL efficiencies. In the review, we summarize the latest progress of new ECL biosensing systems, in particular of emerging luminophores, coreactants, and the involved mechanisms. Possible limitations and exciting future developments of the ECL biosensing are also complementarily discussed. It is highly envisioned that the review article would inspire more intriguing advances both in the fundamental research and more demanding practical applications of ECL for prospective biosensing.

This is a preview of subscription content, access via your institution.

Fig. 1

Copyright 2019 Elsevier

Fig. 2

Copyright 2019 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 3

Copyright 2019 American Chemical Society. b Chemical structure of the synthesized dye (left) and spooling ECL spectra (right). Reprinted with permission from [47]. Copyright 2019 Wiley–VCH Verlag GmbH &Co. KGaA, Weinheim

Fig. 4

Copyright 2019 Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 5

Copyright 2017 American Chemical Society

Fig. 6

Copyright 2020 Wiley–VCH Verlag GmbH & Co. KGaA,Weinheim

Fig. 7

Copyright 2019 American Chemical Society

Fig. 8

Copyright 2019 American Chemical Society

Fig. 9

Copyright 2018 American Chemical Society

Fig. 10

Copyright 2018 American Chemical Society

Fig. 11

Copyright 2018 American Chemical Society

Fig. 12

Copyright 2019 Wiley–VCH Verlag GmbH &Co. KGaA, Weinheim

Fig. 13

Copyright 2018 American Chemical Society

Fig. 14

Copyright 2018 American Chemical Society

Fig. 15

Copyright 2018 American Chemical Society. b The label-free visualization of antigens at the cellular membrane and the simplified Randles circuit. Reprinted with permission from [128]. Copyright 2019 American Chemical Society. Single ECL spike (c) and staircase (d) signals during the collisions process. Insets: ECL snapshots of individual nanoparticles during a typical collision process. Reprinted with permission from [130]. Copyright The Royal Society of Chemistry 2018

Fig. 16

Copyright 2018 American Chemical Society

References

  1. 1.

    Bouffier L, Sojic N. Chapter 1: Introduction and overview of electrogenerated chemiluminescence. In: Sojic N, editor. Analytical electrogenerated chemiluminescence: from fundamentals to bioassays. London: Royal Society of Chemistry; 2019. p. 1–28.

    Google Scholar 

  2. 2.

    Jones A, Dhanapala L, Kankanamage RNT, Kumar CV, Rusling JF. Multiplexed Immunosensors and Immunoarrays. Anal Chem. 2019;92:345–62.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Babarniri B, Bahari D, Salimi A. Highly sensitive bioaffinity electrochemiluminescence sensors: recent advances and future directions. Biosens Bioelectron. 2019;142:111530–47.

    Article  CAS  Google Scholar 

  4. 4.

    Li LL, Chen Y, Zhu JJ. Recent advances in electrochemiluminescence analysis. Anal Chem. 2017;89:358–71.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Ma C, Cao Y, Gou X, Zhu JJ. Recent progress in electrochemiluminescence sensing and imaging. Anal Chem. 2019;92:431–54.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science. 2002;296:1293–7.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Liu ZY, Qi WJ, Xu GB. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–422.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Wu P, Hou XD, Xu JJ, Chen HY. Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev. 2014;114:11027–59.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Richter MM. Electrochemiluminescence. Chem Rev. 2004;104:3003–366.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Kerr E, Doeven EH, Barbante GJ, Hogan CF, Bower DJ, Donnelly PS, et al. Annihilation electrogenerated chemiluminescence of mixed metal chelates in solution: modulating emission colour by manipulating the energetics. Chem Sci. 2015;6:472–9.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Irkham, Watanabe T, Fiorani A, Valenti G, Paolucci F, Einaga Y. Co-reactant-on-demand ECL: electrogenerated chemiluminescence by the in situ production of S2O82- at boron-doped diamond electrodes. J Am Chem Soc. 2016;138:15636–41.

  13. 13.

    Qi HL, Zhang CX. Electrogenerated chemiluminescence biosensing. Anal Chem. 2020;92:524–34.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Zanut A, Fiorani A, Rebeccani S, Kesarkar S, Valenti G. Electrochemiluminescence as emerging microscopy techniques. Anal Bioanal Chem. 2019;411:4375–82.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for bioanalysis. Annu Rev Anal Chem. 2019;12:275–95.

    CAS  Article  Google Scholar 

  16. 16.

    Hu LZ, Xu GB. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39:3275–304.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Gu W, Deng X, Gu X, Jia X, Lou B, Zhang X, et al. Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application. Anal Chem. 2015;87:1876–81.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Mayer M, Takegami S, Neumeier M, Rink S, Jacobi von Wangelin A, Schulte S et al. Electrochemiluminescence bioassays with a water-soluble luminol derivative can outperform fluorescence assays. Angew Chem Int Ed. 2018;57:408–11.

  19. 19.

    Polo F, Rizzo F, Veiga-Gutierrez M, De Cola L, Quici S. Efficient greenish blue electrochemiluminescence from fluorene and spirobifluorene derivatives. J Am Chem Soc. 2012;134:15402–9.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Rizzo F, Polo F, Bottaro G, Fantacci S, Antonello S, Armelao L, et al. From blue to green: fine-tuning of photoluminescence and electrochemiluminescence in bifunctional organic dyes. J Am Chem Soc. 2017;139:2060–9.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Zinna F, Voci S, Arrico L, Brun E, Homberg A, Bouffier L, et al. Circularly-polarized electrochemiluminescence from a chiral bispyrene organic macrocycle. Angew Chem Int Ed. 2019;58:6952–6.

    CAS  Article  Google Scholar 

  22. 22.

    Chen Y, Chen Z, Fang L, Weng A, Luo F, Guo L, et al. Electrochemiluminescence sensor for cancer cell detection based on H2O2-triggered stimulus response system. JOAT. 2020. https://doi.org/10.1007/s41664-020-00124-1.

    Article  Google Scholar 

  23. 23.

    Guo W, Ding H, Gu C, Liu Y, Jiang X, Su B, et al. Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J Am Chem Soc. 2018;140:15904–15.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Han DJ, Qian MP, Gao HF, Wang B, Qi HL, Zhang CX. A "switch-on" photoluminescent and electrochemiluminescent multisignal probe for hypochlorite via a cyclometalated iridium complex. Anal Chim Acta. 2019;1074:98–107.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Zhou YY, Gao HF, Wang XM, Qi HL. Electrogenerated chemiluminescence from heteroleptic Iridium(III) complexes with multicolor emission. Inorg Chem. 2015;54:1446–533.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Zhang N, Gao H, Xu C-H, Cheng Y, Chen H-Y, Xu J-J. An efficient electrochemiluminescence enhancement strategy on bipolar electrode for bioanalysis. Anal Chem. 2019;91:12553–9.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Guo W, Ding H, Zhou P, Wang Y, Su B. Electrochemiluminescence waveguide in single crystalline molecular wires. Angew Chem Int Ed. 2020;59:6745–9.

    CAS  Article  Google Scholar 

  28. 28.

    Wang CZ, E YF, Fan LZ, Wang ZH, Liu HB, Li YL et al. Directed assembly of hierarchical CdS nanotube arrays from CdS nanoparticles: Enhanced solid state electro-chemiluminescence in H2O2 solution. Adv Mater. 2007;19:3677–81.

  29. 29.

    Shan Y, Xu JJ, Chen HY. Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS: Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun. 2009;8:905–7.

    Article  CAS  Google Scholar 

  30. 30.

    Han H, Sheng Z, Liang J. Electrogenerated chemiluminescence from thiol-capped CdTe quantum dots and its sensing application in aqueous solution. Anal Chim Acta. 2007;596:73–8.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Liu X, Jiang H, Lei J, Ju H. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal Chem. 2007;79:8055–60.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Hua LJ, Han HY, Lu DL. A novel method for the determination of l-cysteine, based on the electrochemiluminescence of CdTe quantum dots. Luminescence. 2008;23:72–3.

    Google Scholar 

  33. 33.

    Hua L, Han H, Chen H. Enhanced electrochemiluminescence of CdTe quantum dots with carbon nanotube film and its sensing of methimazole. Electrochim Acta. 2009;54:1389–94.

    CAS  Article  Google Scholar 

  34. 34.

    Jiang H, Ju HX. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system. Anal Chem. 2007;79:6690–6.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Jie G, Zhang J, Wang D, Cheng C, Chen H-Y, Zhu J-J. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal Chem. 2008;80:4033–9.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Han T-T, Dong H, Ren L-L, Bao N, Wu W, Ding S-N. Self-electrochemiluminescence of CdTe nanocrystals capped with 2-diethylaminoethanethiol. Chem Commun. 2017;53:5388–91.

    CAS  Article  Google Scholar 

  37. 37.

    Hesari M, Swanick KN, Lu J-S, Whyte R, Wang S, Ding Z. Highly efficient dual-color electrochemiluminescence from BODIPY-capped PbS nanocrystals. J Am Chem Soc. 2015;137:11266–9.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Zou GZ, Liang GD, Zhang XL. Strong anodic near-infrared electrochemiluminescence from CdTe quantum dots at low oxidation potentials. Chem Commun. 2011;47:10115–7.

    CAS  Article  Google Scholar 

  39. 39.

    Pan D, Chen KY, Zhou Q, Zhao JJ, Xue HJ, Zhang YJ, et al. Engineering of CdTe/SiO2 nanocomposites: enhanced signal amplification and biocompatibility for electrochemiluminescent immunoassay of alpha-fetoprotein. Biosens Bioelectron. 2019;131:178–84.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Tian CY, Wang L, Luan F, Fu XL, Zhuang XM, Chen LX. A novel electrochemiluminescent emitter of europium hydroxide nanorods and its application in bioanalysis. Chem Commun. 2019;55:12479–82.

    CAS  Article  Google Scholar 

  41. 41.

    Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens Bioelectron. 2018;117:332–9.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Zhao M, Chen AY, Huang D, Chai YQ, Zhuo Y, Yuan R. MoS2 quantum dots as new electrochemiluminescence emitters for ultrasensitive bioanalysis of lipopolysaccharide. Anal Chem. 2017;89:8335–422.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Lei YM, Zhou J, Chai YQ, Zhuo Y, Yuan R. SnS2 quantum dots as new emitters with strong electrochemiluminescence for ultrasensitive antibody detection. Anal Chem. 2018;90:12270–7.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Shan J, Ma ZF. A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta. 2017;184:969–79.

    CAS  Article  Google Scholar 

  45. 45.

    Peng H, Huang Z, Sheng Y, Zhang X, Deng H, Chen W, et al. Pre-oxidation of gold nanoclusters results in a 66 % anodic electrochemiluminescence yield and drives mechanistic insights. Angew Chem Int Ed. 2019;58:11691–4.

    CAS  Article  Google Scholar 

  46. 46.

    Chen S, Ma HD, Padelford JW, Qinchen W, Yu W, Wang SX, et al. Near Infrared electrochemiluminescence of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)3 standard. J Am Chem Soc. 2019;141:9603–9.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Maar RR, Zhang R, Stephens DG, Ding Z, Gilroy JB. Near-infrared photoluminescence and electrochemiluminescence from a remarkably simple boron difluoride formazanate dye. Angew Chem Int Ed. 2019;58:1052–6.

    CAS  Article  Google Scholar 

  48. 48.

    Zhao L, Ji J, Shen Y, Wu K, Zhao T, Yang H, et al. Exfoliation and sensitization of 2D carbon nitride for photoelectrochemical biosensing under red light. Chem Eur J. 2019;25:15680–6.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Yang LQ, Zhang B, Fu L, Fu KN, Zou GZ. Efficient and monochromatic electrochemiluminescence of aqueous-soluble Au nanoclusters via host-guest recognition. Angew Chem Int Ed. 2019;58:6901–5.

    CAS  Article  Google Scholar 

  50. 50.

    Liu SL, Zhang QH, Zhang L, Gu L, Zou GZ, Bao JC, et al. Electrochemiluminescence tuned by electron-hole recombination from symmetry-breaking in Wurtzite ZnSe. J Am Chem Soc. 2016;138:1154–7.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Wang HM, Wang CC, Wang AJ, Zhang L, Luo XL, Yuan PX, et al. Green synthesis of Pd nanocones as a novel and effective electrochemiluminescence illuminant for highly sensitive detection of dopamine. Sens Actuators B Chem. 2019;281:588–94.

    CAS  Article  Google Scholar 

  52. 52.

    Tan X, Zhang B, Zou GZ. Electrochemistry and electrochemiluminescence of organometal halide perovskite nanocrystals in aqueous medium. J Am Chem Soc. 2017;139:8772–6.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Wusimanjiang Y, Yadav J, Arau V, Steen AE, Hammer NI, Pan S. Blue electrogenerated chemiluminescence from halide perovskite nanocrystals. JOAT. 2019;3:125–33.

    Google Scholar 

  54. 54.

    Wang F, Lin J, Zhao TB, Hu DD, Wu T, Liu Y. Intrinsic, "Vacancy Point Defect" induced electrochemiluminescence from coreless supertetrahedral chalcogenide nanocluster. J Am Chem Soc. 2016;138:7718–24.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Jia Y, Yang L, Feng RQ, Ma HM, Fan DW, Yan T, et al. MnCO3 as a new electrochemiluminescence emitter for ultrasensitive bioanalysis of beta-amyloid(1–42) oligomers based on site-directed immobilization of antibody. ACS Appl Mater Interfaces. 2019;11:7157–63.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Li Y, Jiang ZW, Xiao SY, Huang CZ, Li YF. Terbium(III) organic gels: novel antenna effect-induced enhanced electrochemiluminescence emitters. Anal Chem. 2018;90:12191–7.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Ji J, Wen J, Shen Y, Lv Y, Chen Y, Liu S, et al. Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing. J Am Chem Soc. 2017;139:11698–701.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Zhou ZX, Zhang YY, Shen YF, Liu SQ, Zhang YJ. Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more. Chem Soc Rev. 2018;47:2298–321.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Zhou ZX, Wang JH, Yu JC, Shen YF, Li Y, Liu AR, et al. Dissolution and liquid crystals phase of 2D polymeric carbon nitride. J Am Chem Soc. 2015;137:2179–82.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Chen LC, Huang DJ, Ren SY, Dong TQ, Chi YW, Chen GN. Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale. 2013;5:225–30.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Liu YT, Wang QB, Lei JP, Hao Q, Wang W, Ju HX. Anodic electrochemiluminescence of graphitic-phase C3N4 nanosheets for sensitive biosensing. Talanta. 2014;122:130–4.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Zhou ZX, Shang QW, Shen YF, Zhang LQ, Zhang YY, Lv YQ, et al. Chemically modulated carbon nitride nanosheets for highly selective electrochemiluminescent detection of multiple metal-ions. Anal Chem. 2016;88:6004–100.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Zhao TT, Zhou Q, Lv YQ, Han D, Wu KQ, Zhao LF, et al. Ultrafast condensation of carbon nitride on electrodes with exceptional boosted photocurrent and electrochemiluminescence. Angew Chem Int Ed. 2020;59:1139–43.

    CAS  Article  Google Scholar 

  64. 64.

    Qi BP, Zhang XR, Shang BB, Xiang DS, Qu WY, Zhang SH. A facile method to sensitively monitor chlorinated phenols based on Ru(bpy)32+ electrochemiluminescent system using graphene quantum dots as coreactants. Carbon. 2017;121:72–8.

    CAS  Article  Google Scholar 

  65. 65.

    Luo LJ, Li LB, Xu XX, Liu D, Li JY, Wang K, et al. Determination of pentachlorophenol by anodic electrochemiluminescence of Ru(bpy)32+ based on nitrogen-doped graphene quantum dots as co-reactant. RCS Adv. 2017;7:50634–42.

    CAS  Google Scholar 

  66. 66.

    Li LB, Liu D, Mao HP, You TY. Multifunctional solid-state electrochemiluminescence sensing platform based on poly(ethylenimine) capped N-doped carbon dots as novel co-reactant. Biosens Bioelectron. 2017;89:489–95.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Carrara S, Arcudi F, Prato M, De Cola L. Amine-rich nitrogen-doped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew Chem Int Ed. 2017;56:4757–61.

    CAS  Article  Google Scholar 

  68. 68.

    Xing HH, Zhai QF, Zhang XW, Li J, Wang EK. Boron nitride quantum dots as efficient coreactant for enhanced electrochemiluminescence of Ruthenium(II) tris(2,2 '-bipyridyl). Anal Chem. 2018;90:2141–7.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Zhang L, Tian KJ, Dong YP, Ding HC, Wang CM. Electrogenerated chemiluminescence of Ru(bpy)32+ at a black phosphorus quantum dot modified electrode and its sensing application. Analyst. 2018;143:304–10.

    CAS  Article  Google Scholar 

  70. 70.

    Zhu RF, Zhang YH, Wang J, Yue CC, Fang WH, Dang JQ, et al. A novel anodic electrochemiluminescence behavior of sulfur-doped carbon nitride nanosheets in the presence of nitrogen-doped carbon dots and its application for detecting folic acid. Anal Bioanal Chem. 2019;411:7137–46.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Wang CX, Chen LM, Wang PJ, Li MS, Liu DF. A novel ultrasensitive electrochemiluminescence biosensor for glutathione detection based on poly-l-lysine as co-reactant and graphene-based poly(luminol/aniline) as nanoprobes. Biosens Bioelectron. 2019;133:154–9.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Li Y, He L, Huang CZ, Li YF. Silver-based metal-organic gels as novel coreactant for enhancing electrochemiluminescence and its biosensing potential. Biosens Bioelectron. 2019;134:29–35.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Lan YX, Wang C, Yuan F, Fereja TH, Lou BH, Han S, et al. Electrochemiluminescence of 3,4,9,10-perylenetetracarboxylic acid/oxamic hydrazide and its application in the detection of tannic acid. Analyst. 2019;144:4493–8.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Irkham, Fiorani A, Valenti G, Kamoshida N, Paolucci F, Einaga Y. Electrogenerated chemiluminescence by in situ production of coreactant hydrogen peroxide in carbonate aqueous solution at a boron-doped diamond electrode. J Am Chem Soc. 2020;142:1518–25.

  75. 75.

    Lei YM, Wen RX, Zhou J, Chai YQ, Yuan R, Zhuo Y. Silver ions as novel coreaction accelerator for remarkably enhanced electrochemiluminescence in a PTCA-S2O82- system and its application in an ultrasensitive assay for mercury ions. Anal Chem. 2018;90:6851–8.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Wu FF, Zhou Y, Zhang H, Yuan R, Chai YQ. Electrochemiluminescence peptide-based biosensor with hetero-nanostructures as coreaction accelerator for the ultrasensitive determination of tryptase. Anal Chem. 2018;90:2263–70.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Jia Y, Yang L, Xue JW, Ren X, Zhang N, Fan DW, et al. Highly-branched Cu2O as well-ordered co-reaction accelerator for amplifying electrochemiluminescence response of gold nanoclusters and procalcitonin analysis based on protein bioactivity maintenance. Biosens Bioelectron. 2019;144:111676–82.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Song XZ, Li XJ, Wei D, Feng R, Yan T, Wang YG, et al. CuS as co-reaction accelerator in PTCA-K2S2O8 system for enhancing electrochemiluminescence behavior of PTCA and its application in detection of amyloid-beta protein. Biosens Bioelectron. 2019;126:222–9.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Zhang XL, Li WM, Zhou Y, Chai YQ, Yuan R. An ultrasensitive electrochemiluminescence biosensor for MicroRNA detection based on luminol-functionalized Au NPs@ZnO nanomaterials as signal probe and dissolved O2 as coreactant. Biosens Bioelectron. 2019;135:8–13.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Wang C, Zhang N, Li YY, Yang L, Wei D, Yan T, et al. Cobalt-based metal-organic frameworks as co-reaction accelerator for enhancing electrochemiluminescence behavior of N-(aminobutyl)-N-(ethylisoluminol) and ultrasensitive immunosensing of amyloid-beta protein. Sens Actuators B Chem. 2019;291:319–28.

    CAS  Article  Google Scholar 

  81. 81.

    Zhang C, Fan Y, Zhang H, Chen SH, Yuan R. An ultrasensitive signal-on electrochemiluminescence biosensor based on Au nanoclusters for detecting acetylthiocholine. Anal Bioanal Chem. 2019;411:905–13.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Gu W, Wang H, Jiao L, Wu Y, Chen Y, Hu L, et al. Single-atom iron boosts electrochemiluminescence. Angew Chem Int Ed. 2020;59:3534–8.

    CAS  Article  Google Scholar 

  83. 83.

    de Poulpiquet A, Diez-Buitrago B, Milutinovic MD, Sentic M, Arbault S, Bouffier L, et al. Dual enzymatic detection by bulk electrogenerated chemiluminescence. Anal Chem. 2016;88:6585–92.

    PubMed  Article  Google Scholar 

  84. 84.

    Muzyka K, Saqib M, Liu ZY, Zhang W, Xu GB. Progress and challenges in electrochemiluminescent aptasensors. Biosens Bioelectron. 2017;92:241–58.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Wang HJ, Yuan YL, Chai YQ, Yuan R. Sandwiched electrochemiluminescent peptide biosensor for the detection of prognostic indicator in early-stage cancer based on hollow, magnetic, and self-enhanced nanosheets. Small. 2015;11:3703–9.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Ye J, Liu GY, Yan MX, Zhu QJ, Zhu LP, Huang JS, et al. Highly luminescent and self-enhanced electrochemiluminescence of tris(bipyridine) Ruthenium(II) nanohybrid and its sensing application for label-free detection of MicroRNA. Anal Chem. 2019;91:13237–433.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Yang X, Yu YQ, Peng LZ, Lei YM, Chai YQ, Yuan R, et al. Strong electrochemiluminescence from MOF Accelerator enriched quantum dots for enhanced sensing of trace cTnI. Anal Chem. 2018;90:3995–4002.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Zhou Y, Chen SH, Luo XL, Chai YQ, Yuan R. Ternary electrochemiluminescence nanostructure of Au nanoclusters as a highly efficient signal label for ultrasensitive detection of cancer biomarkers. Anal Chem. 2018;90:10024–30.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Tang HJ, Chen WX, Li DD, Duan XL, Ding SJ, Zhao M, et al. Luminol-based ternary electrochemiluminescence nanospheres as signal tags and target-triggered strand displacement reaction as signal amplification for highly sensitive detection of Helicobacter pylori DNA. Sens Actuators B Chem. 2019;293:304–11.

    CAS  Article  Google Scholar 

  90. 90.

    Wang HJ, Chai YQ, Li H, Yuan R. Sensitive electrochemiluminescent immunosensor for diabetic nephropathy analysis based on tris(bipyridine) ruthenium(II) derivative with binary intramolecular self-catalyzed property. Biosens Bioelectron. 2018;100:35–40.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Tian R, Zhang ST, Li MW, Zhou YQ, Lu B, Yan DP, et al. Localization of Au nanoclusters on layered double hydroxides nanosheets: confinement-induced emission enhancement and temperature-responsive luminescence. Adv Funct Mater. 2015;25:5006–155.

    CAS  Article  Google Scholar 

  92. 92.

    Chen Y, Zhou SW, Li LL, Zhu JJ. Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today. 2017;12:98–115.

    CAS  Article  Google Scholar 

  93. 93.

    Wu P, Hou XD, Xu JJ, Chen HY. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale. 2016;8:8427–42.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Liu JW, Lu Y. Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers. Anal Chem. 2003;75:6666–72.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Wu MS, He LJ, Xu JJ, Chen HY. RuSi@Ru(bpy)32+/Au@Ag2S nanoparticles electrochemiluminescence resonance energy transfer system for sensitive DNA detection. Anal Chem. 2014;86:4559–655.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Zhou H, Zhang YY, Liu J, Xu JJ, Chen HY. Electrochemiluminescence resonance energy transfer between CdS: Eu nancrystals and Au nanorods for sensitive DNA detection. J Phys Chem C. 2012;116:17773–800.

    CAS  Article  Google Scholar 

  97. 97.

    Lu HJ, Pan JB, Wang YZ, Ji SY, Zhao W, Luo XL, et al. Electrochemiluminescence energy resonance transfer system between RuSi nanoparticles and hollow Au nanocages for nucleic acid detection. Anal Chem. 2018;90:10434–41.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Zhao GH, Wang YG, Li XJ, Yue Q, Dong X, Du B, et al. Dual-quenching electrochemiluminescence strategy based on three-dimensional metal-organic frameworks for ultrasensitive detection of amyloid-beta. Anal Chem. 2019;91:1989–96.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Xue J, Yang L, Jia Y, Zhang Y, Wu D, Ma H, et al. Dual-quenching electrochemiluminescence resonance energy transfer system from Ru–In2S3 to α-MoO3-Au based on protect of protein bioactivity for procalcitonin detection. Biosens Bioelectron. 2019;142:111524–31.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Chen MM, Wang Y, Cheng SB, Wen W, Zhang XH, Wang SF, et al. Construction of highly efficient resonance energy transfer platform inside a nanosphere for ultrasensitive electrochemiluminescence detection. Anal Chem. 2018;90:5075–81.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Wang NN, Wang ZY, Chen LZ, Chen WW, Quan YW, Cheng YX, et al. Dual resonance energy transfer in triple-component polymer dots to enhance electrochemiluminescence for highly sensitive bioanalysis. Chem Sci. 2019;10:6815–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Ye J, Zhu LP, Yan MX, Zhu QJ, Lu QQ, Huang JS, et al. Dual-wavelength ratiometric electrochemiluminescence immunosensor for cardiac Troponin I detection. Anal Chem. 2019;91:1524–31.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Feng QM, Shen YZ, Li MX, Zhang ZL, Zhao W, Xu JJ, et al. Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)32+ for microRNA detection. Anal Chem. 2016;88:937–44.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Wang YZ, Hao N, Feng QM, Shi HW, Xu JJ, Chen HY. A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and Ag-PAMAM-luminol nanocomposites. Biosens Bioelectron. 2016;77:76–82.

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    Wang MK, Kong DS, Su DD, Liu Y, Su XG. Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot-copper nanocluster nanohybrid. Nanoscale. 2019;11:13903–8.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Huo XL, Zhang N, Yang H, Xu JJ, Chen HY. Electrochemiluminescence resonance energy transfer system for dual-wavelength ratiometric miRNA detection. Anal Chem. 2018;90:13723–8.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Luo JD, Xie ZL, Lam JWY, Cheng L, Chen HY, Qiu CF, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. 2001;18:1740–1.

    Article  Google Scholar 

  108. 108.

    Luo YH, Huang JG, Ichinose I. Bundle-like assemblies of cadmium hydroxide nanostrands and anionic dyes. J Am Chem Soc. 2005;127:8296–7.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-induced emission: together we shine, United We Soar! Chem Rev. 2015;115:11718–940.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Wei X, Zhu MJ, Yan H, Lu CS, Xu JJ. Recent advances in aggregation-induced electrochemiluminescence. Chem Eur J. 2019;25:12671–83.

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Carrara S, Aliprandi A, Hogan CF, De Cola L. Aggregation-induced electrochemiluminescence of Platinum(II) complexes. J Am Chem Soc. 2017;139:14605–10.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Liu JL, Zhuo Y, Chai YQ, Yuan R. BSA stabilized tetraphenylethylene nanocrystals as aggregation-induced enhanced electrochemiluminescence emitters for ultrasensitive microRNA assay. Chem Commun. 2019;55:9959–62.

    CAS  Article  Google Scholar 

  113. 113.

    Saremi M, Amini A, Heydari H. An aptasensor for troponin I based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(III) complex and poly(4-vinylpyridine-co-styrene) deposited on nitrogen-doped graphene. Microchim Acta. 2019;186:254–64.

    Article  CAS  Google Scholar 

  114. 114.

    Wei X, Zhu MJ, Cheng Z, Lee M, Yan H, Lu CS, et al. Aggregation-induced electrochemiluminescence of carboranyl carbazoles in aqueous media. Angew Chem Int Ed. 2019;58:3162–6.

    CAS  Article  Google Scholar 

  115. 115.

    Han ZG, Zhang YP, Wu YX, Li ZM, Bai L, Huo SH, et al. Substituent-induced aggregated state electrochemiluminescence of tetraphenylethene derivatives. Anal Chem. 2019;91:8676–82.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Wang ZY, Feng YQ, Wang NN, Cheng YX, Quan YW, Ju HX. Donor-acceptor conjugated polymer dots for tunable electrochemiluminescence activated by aggregation-induced emission-active moieties. J Phys Chem Lett. 2018;9:5296–302.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Liu JL, Zhang JQ, Tang ZL, Zhuo Y, Chai YQ, Yuan R. Near-infrared aggregation-induced enhanced electrochemiluminescence from tetraphenylethylene nanocrystals: a new generation of ECL emitters. Chem Sci. 2019;10:4497–501.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Gao TB, Zhang JJ, Yan RQ, Cao DK, Jiang DC, Ye DJ. Aggregation-induced electrochemiluminescence from a cyclometalated Iridium(III) complex. Inorg Chem. 2018;57:4310–6.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Carrara S, Stringer B, Shokouhi A, Ramkissoon P, Agugiaro J, Wilson DJD, et al. Unusually strong electrochemiluminescence from iridium-based redox polymers immobilized as thin layers or polymer nanoparticles. ACS Appl Mater Interfaces. 2018;10:37251–7.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Liu H, Wang L, Gao H, Qi H, Gao Q, Zhang C. Aggregation-induced enhanced electrochemiluminescence from organic nanoparticles of donor–acceptor based coumarin derivatives. ACS Appl Mater Interfaces. 2017;9:44324–31.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Han Z, Yang Z, Sun H, Xu Y, Ma X, Shan D, et al. Electrochemiluminescence platforms based on small water-insoluble organic molecules for ultrasensitive aqueous-phase detection. Angew Chem Int Ed. 2019;58:5915–9.

    CAS  Article  Google Scholar 

  122. 122.

    Jiang MH, Li SK, Zhong X, Liang WB, Chai YQ, Zhuo Y, et al. Electrochemiluminescence enhanced by restriction of intramolecular motions (RIM): tetraphenylethylene microcrystals as a novel emitter for Mucin 1 detection. Anal Chem. 2019;91:3710–6.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Lv YQ, Zhou ZX, Shen YF, Zhou Q, Ji JJ, Liu SQ, et al. Coupled fluorometer-potentiostat system and metal-free monochromatic luminophores for high-resolution wavelength-resolved electrochemiluminescent multiplex bioassay. ACS Sensors. 2018;3:1362–7.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Jones A, Dhanapala L, Kankanamage RNT, Kumar CV, Rusling JF. Multiplexed immunosensors and immunoarrays. Anal Chem. 2020;92:345–62.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Gao HF, Dang Q, Xia SQ, Zhao Y, Qi HL, Gao Q, et al. Highly selective electrogenerated chemiluminescence biosensor for simultaneous detection of matrix metalloproteinase-2 and matrix metalloproteinase-7 in cell secretions. Sens Actuators B Chem. 2017;253:69–766.

    CAS  Article  Google Scholar 

  126. 126.

    Zhou J, Nie L, Zhang B, Zou GZ. Spectrum-resolved triplex-color electrochemiluminescence multiplexing immunoassay with highly-passivated nanocrystals as tags. Anal Chem. 2018;90:12361–5.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, et al. Surface-confined electrochemiluminescence microscopy of cell membranes. J Am Chem Soc. 2018;140:14753–60.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Zhang JJ, Jin R, Jiang DC, Chen HY. Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J Am Chem Soc. 2019;141:10294–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Wang YF, Guo WL, Yang Q, Su B. Electrochemiluminescence self-interference spectroscopy with vertical nanoscale resolution. J Am Chem Soc. 2020;142:1222–6.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Ma C, Wu W, Li L, Wu S, Zhang J, Chen Z, et al. Dynamically imaging collision electrochemistry of single electrochemiluminescence nano-emitters. Chem Sci. 2018;9:6167–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Fereja TH, Du F, Wang C, Snizhko D, Guan Y, Xu G. Electrochemiluminescence imaging techniques for analysis and visualizing. JOAT. 2020. https://doi.org/10.1007/s41664-020-00128-x.

    Article  Google Scholar 

  132. 132.

    Zhao YR, Yu J, Xu GB, Sojic N, Loget G. Photoinduced electrochemiluminescence at silicon electrodes in water. J Am Chem Soc. 2019;141:13013–6.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Lv YQ, Chen SY, Shen YF, Ji JJ, Zhou Q, Liu SQ, et al. Competitive multiple-mechanism-driven electrochemiluminescent detection of 8-hydroxy-2′-deoxyguanosine. J Am Chem Soc. 2018;140:2801–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (21675022 and 21775018), the Natural Science Foundation of Jiangsu Province (BK20170084) and the Fundamental Research Funds for the Central Universities.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuanjian Zhang or Yanfei Shen.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Ning, Z., Chen, K. et al. Recent Advances of Electrochemiluminescent System in Bioassay. J. Anal. Test. 4, 57–75 (2020). https://doi.org/10.1007/s41664-020-00136-x

Download citation

Keywords

  • Electrochemiluminescence
  • Emitters
  • Coreactants
  • Mechanism
  • Biosensors