Skip to main content
Log in

Simultaneous Determination of Amoxicillin, Lansoprazole, and Levofloxacin in Pharmaceuticals by HPLC with UV–Vis Detector

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

In this study, a specific and rapid high-performance liquid chromatography (HPLC) method has been developed and validated for the simultaneous determination of amoxicillin, lansoprazole, and levofloxacin in pharmaceuticals. Paracetamol was used as internal standard (IS) in the measurements. UV–Vis absorption spectra of the analytes and the IS were taken for the determination of suitable absorption wavelength of UV–Vis detector (diode array detector, DAD) in the HPLC instrument. A reverse-phase C18 column was used in the separation and determination of amoxicillin, lansoprazole, and levofloxacin together with the IS. The pharmaceutical analytes were quantified by the UV–Vis diode array detector in the HPLC using MeOH-0.01 M CH3COONH4 (70:30) as the mobile phase. The linear calibration curves of them were measured in the ranges of 15–40 mg/L, 2.5–15.0 mg/L, and 7.5–20.0 mg/L for amoxicillin, lansoprazole, and levofloxacin, respectively. Excellent calibration correlations (R2: 0.9942, 0.9997, and 0.9974) were obtained. The percentage recoveries of the amoxicillin, lansoprazole, and levofloxacin in commercial pharmaceuticals were obtained as 105.5%, 98.57%, and 102.5%, respectively. The results showed that amoxicillin, lansoprazole, and levofloxacin together with paracetamol IS could be separated and determined simultaneously with low LOD and LOQ values using the proposed HPLC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dousa M, Hosmanova R. Rapid determination of amoxicillin in premixes by HPLC. J Pharm Biomed Anal. 2005;7(2):373–7.

    Google Scholar 

  2. Vu DH, Do TG. Comparative study of RP-HPLC and UV spectrophotometric techniques for the simultaneous determination of amoxicillin and cloxacillin in capsules. J Young Pharmacist. 2010;2(2):190–5.

    Google Scholar 

  3. Nikam DS, Bonde CG, Surana SJ, Venkateshwarlu G, Dekate PG. Development and validation of RP-HPLC method for simultaneous estimation of amoxicillin trihydrate and flucloxacillin sodium in capsule dosage form. Int J Pharm Tech Res. 2009;1(3):935–9.

    CAS  Google Scholar 

  4. Shanmugasundaram P, Raj RK, Mohanrangan J, Devdass G, Arunadevi M, Maheswari R, Aanandhi MV. Simultaneous estimation of amoxicillin and flucloxacillin in its combined capsule dosage form by HPLC. Rasayan J Chem. 2009;2:57–60.

    CAS  Google Scholar 

  5. Borner K, Borner E, Lode H. Quantitative determination of lansoprazole in human serum by HPLC. Chromatographia. 1997;45(1):450–2.

    CAS  Google Scholar 

  6. Demir A, Aydın A. A new drug in the treatment of peptic ulcer disease: Lansoprazole. Turk J Gastroenterol. 1998;9(1):1–6.

    Google Scholar 

  7. Tadwee I, Ade P, Bhalerao P, Khan A, Shahi S. Development and validation of UV spectroscopy method for estimation of lansoprazole. World J Pharm Res. 2017;6(17):915–24.

    CAS  Google Scholar 

  8. Davis R, Bryson HM. Levofloxacin. Drugs. 1994;47:677–700.

    CAS  PubMed  Google Scholar 

  9. Naveed S, Sultana N, Arayne MS, Dilshad H. A new HPLC method for the assay of levofloxacin and its application in drug–metal interaction studies. J Sci Innov Res. 2014;3(1):91–6.

    Google Scholar 

  10. Al-Momani IF. Flow injection spectrophotometric determination of the antibacterial levofloxacin in tablets and human urine. Anal Lett. 2006;39(4):741–50.

    CAS  Google Scholar 

  11. Nabi SA, Khan MA, Khowaja SN. Thin-layer chromatographic separation of penicillins on stannic arsenate-cellulose layers. Acta Chromatogr. 2006;16:164–72.

    CAS  Google Scholar 

  12. Storms ML, Stewart JT. Development of a reversed-phase liquid chromatographic method for the analysis of amoxicillin, metronidazole, and pantoprazole in human plasma using solid-phase extraction. J Liq Chromatogr RT. 2002;25:2433–43.

    CAS  Google Scholar 

  13. Luo WH, Ang CYW. Determination of amoxicillin residues in animal tissues by solid-phase extraction and liquid chromatography with fluorescence detection. J AOAC Int. 2000;83:20–5.

    CAS  PubMed  Google Scholar 

  14. Dave JB, Banerjee SK. Spectrophotometric estimation of amoxycillin by reaction with diazotized primary aromatic amines. Indian J Pharm Sci. 1986;48:73–5.

    CAS  Google Scholar 

  15. Aktaş AH, Sarıdağ AM. Liquid Chromatographic–chemometric techniques for the simultaneous HPLC determination of lansoprazole, amoxicillin and clarithromycin in commercial preparation. J Chromatogr Sci. 2017;55(8):798–804.

    PubMed  Google Scholar 

  16. Basavaiah K, Ramakrishna V, Somashekar BC. Spectrophotometric determination of lansoprazole in pharmaceuticals using bromate-bromide mixture based on redox and complexation reactions. Eclet Quim. 2007;32(1):57–64.

    CAS  Google Scholar 

  17. Özaltın N. Determination of lansoprazole in pharmaceutical dosage forms by two different spectroscopic methods. J Pharm Biomed Anal. 1999;20:599–606.

    PubMed  Google Scholar 

  18. Krishna AM, Rajesh KS, Sudheer M, Kumar AK, Siva Kumar AVS, Sekhar GR, Nagarjuna S. New UV spectrophotometric method for the determination of lansoprazole in pharmaceutical dosage form and its application to protein binding study. J Pharm Res. 2011;4:1586–7.

    CAS  Google Scholar 

  19. Rahman N, Khan S. Experimental design approach in the optimization of potentiometric method for lansoprazole determination using lansoprazole-tungstate based ion-selective electrode. Ind Eng Chem Res. 2018;57(29):9351–61.

    CAS  Google Scholar 

  20. Wang H, Sun Y, Meng X, Yang B, Wang J, Yang Y, Gu J. Determination of lansoprazole enantiomers in dog plasma by column-switching liquid chromatography with tandem mass spectrometry and its application to a preclinical pharmacokinetic study. J Separ Sci. 2015;38(17):2960–7.

    CAS  Google Scholar 

  21. Cao S, Guo Y, Liao X, Guo Y, Ruan B, Zhao Y. Analysis of lansoprazole and its by products by liquid chromatography-electrospary ionization mass spectrometry. J. Inst. Anal. 2006;4:41–4.

    Google Scholar 

  22. Tivesten A, Folestad S, Schonbacher V, Svensson K. Nonaqueous capillary electrophoresis for the analysis of labile pharmaceutical compounds. Chromatographia. 1999;49:S7–11.

    CAS  Google Scholar 

  23. Oriquat G, Osman A, Abdul-Azim M, Abuhamdah S. Development and validation of a stability indicating spectrofluorometric method for the determination of lanzoprazole via its degradation product. J Appl Pharm Sci. 2014;4:57–61.

    CAS  Google Scholar 

  24. Yardımcı C, Özaltın C. Electrochemical studies and differential pulse polarographic analysis of lansoprazole in pharmaceuticals. Analyst. 2001;126:361–6.

    PubMed  Google Scholar 

  25. Radi A. Anodic voltammetric assay of lansoprazole and omeprazole on a carbon paste electrode. J Pharm Biomed Anal. 2003;31:1007–12.

    CAS  PubMed  Google Scholar 

  26. Basavaiah K, Ramakrishna V, Anilkumar UR, Udaya K. Spectrophotometric and high performance liquid–chromatographic determination of lansoprazole in pharmaceuticals. Indian J Chem Technol. 2006;13:549–54.

    CAS  Google Scholar 

  27. Reddy BP, Reddy GV. Validation and stability of RP-HPLC for the determination of lansoprazole in tablet dosage form and human plasma. Pharm Res. 2009;1:60–6.

    Google Scholar 

  28. Neckel U, Joukhoalor C, Frossard M, Jager W, Muller M, Mayer BX. Simultaneous determination of levofloxacin and ciprofloxacin in microdialysates and plasma by high-performance liquid chromatography. Anal Chim Acta. 2002;463:199–206.

    CAS  Google Scholar 

  29. Cheng FC, Tsai TR, Chen YF, Hung LC, Tsai TH. Pharmacokinetic study of levofloxacin in rat blood and bile by micro dialysis and high-performance liquid chromatography. J Chromatogr A. 2002;961:131–6.

    CAS  PubMed  Google Scholar 

  30. Gonzalez JAO, Mochon MC, Rosq FTB. Spectrofluorimetric determination of levofloxacin in tablets, human urine and serum. Talanta. 2000;52:1149–56.

    CAS  PubMed  Google Scholar 

  31. Du LM, Yang YQ, Wang QM. Spectrofluorometric determination of certain quinolone through charge transfer complex formation. Anal Chim Acta. 2004;516:237–43.

    CAS  Google Scholar 

  32. Huang JY, Bao T, Hu TX, Wen W, Zhang XH, Wang SF. Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots. Microchim Acta. 2017;184(1):127–35.

    CAS  Google Scholar 

  33. Altiokka G, Atkosar Z, Can NO. The determination of levofloxacin by flow injection analysis using UV detection, potentiometry, and conductometry in pharmaceutical preparations. J Pharm Biom Anal. 2002;30(3):881–5.

    CAS  Google Scholar 

  34. El-Brashy AM, Metwally ME, El-Scpai FA. Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes. Farmaco. 2004;59(10):809–17.

    CAS  PubMed  Google Scholar 

  35. Sastry CSP, Rao KR, Prasad DS. Extractive spectrophotometric determination of some fluoroquinolone derivatives in pure and dosage forms. Talanta. 1995;42(3):311–6.

    CAS  PubMed  Google Scholar 

  36. Feng Z, Bian X, Zhi Z, Shen T. Study on the charge-transfer reaction between 7,7,8,8-tetracyanoquinodimethane and drugs. J Pharm Biom Anal. 1999;21(2):355–60.

    Google Scholar 

  37. Suliman FE, Sultan SM. Sequential injection technique employed for stoichiometric studies, optimization and quantitative determination of some fluoroquinolone antibiotics complexed with iron(III) in sulfuric acid media. Talanta. 1996;43(4):559–68.

    CAS  PubMed  Google Scholar 

  38. Djabarouti S, Boselli E, Allauuchiche B, Ba B, Nguyen AT, Gordi JB, Bernadou JM, Saux MC, Breilh D. Determination of levofloxacin in plasma, bronchoalveolar lavage and bone tissues by high-performance liquid chromatography with ultraviolet detection using a fully automated extraction method. J Chromatogr B. 2004;799:165–72.

    CAS  Google Scholar 

  39. Czyrski A, Szałek E. An HPLC method for levofloxacin determination and its application in biomedical analysis. J Anal Chem. 2016;71(8):840–3.

    CAS  Google Scholar 

  40. Özdemir A, Korkmaz A. Comparative study of electrospray mass spectrometry and first derivative method and validation by HPLC method. J Food Drug Anal. 2007;15(2):118–25.

    Google Scholar 

  41. Joshi S. HPLC separation of antibiotics present in formulated and unformulated samples. J Pharm Biomed Anal. 2002;28(5):795–809.

    CAS  PubMed  Google Scholar 

  42. Rele RV, Mali RN. Simultaneous determination of amoxicillin trihydrate and bromhexine hydrochloride in pharmaceutical dosage by reverse phase high performance liquid chromatography. Der Pharma Chem. 2013;5(1):273–8.

    CAS  Google Scholar 

  43. Chamseddin C, Jira TH. Comparison of the chromatographic behavior of levofloxacin, ciprofloxacin and moxifloxacin on various HPLC phases. Die Pharmazie-Int J Pharm Sci. 2011;66(4):244–8.

    CAS  Google Scholar 

  44. Miura M, Tada H, Suzuki T. Simultaneous determination of lansoprazole enantiomers and their metabolites in plasma by liquid chromatography with solid-phase extraction. J Chromatogr B. 2004;804(2):389–95.

    CAS  Google Scholar 

  45. Uddin MN, Das S, Khan SH, Shill SK, Bhuiyan HR, Karim R. Simultaneous determination of amoxicillin and chloramphenicol and their drug interaction study by the validated UPLC method. J Taibah Univ Sci. 2016;10(5):755–65.

    Google Scholar 

  46. Mohammadi A, Rezanour N, Dogaheh MA, Bidkorbeh FG, Hashem M, Walker RB. A stability-indicating high performance liquid chromatographic (HPLC) assay for the simultaneous determination of atorvastatin and amlodipine in commercial tablets. J Chromatogr B. 2007;846(1–2):215–21.

    CAS  Google Scholar 

  47. Sabry SM, Abdel-Hay MH, Belal TS, Mahgoub AA. Development and validation of HPLC-DAD method for the simultaneous determination of amoxicillin, metronidazole and rabeprazole sodium. Application to spiked simulated intestinal fluid samples. Ann Pharm Fr 2015;73(5):351–60.

  48. González JO, Mochón MC, de La Rosa FB. Simultaneous determination of cefepime and the quinolones garenoxacin, moxifloxacin and levofloxacin in human urine by HPLC–UV. Microchim Acta. 2005;151(1–2):39–45.

    Google Scholar 

  49. Smerikarova M, Bozhanov S, Maslarska V. Development and validation of a RP-HPLC method to quantify amoxicillin, tinidazole, esomeprazole and lansoprazole in a mixture. Ind J Pharm Sci. 2020;81(6):1122–7.

    Google Scholar 

  50. Noubarani M, Keyhanfar F, Motevalian M, Mahmoudian M. Improved HPLC method for determination of four PPIs, omeprazole, pantoprazole, lansoprazole and rabeprazole in human plasma. J Pharm Pharm Sci. 2010;13(1):1–10.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Gülfen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülfen, M., Canbaz, Y. & Özdemir, A. Simultaneous Determination of Amoxicillin, Lansoprazole, and Levofloxacin in Pharmaceuticals by HPLC with UV–Vis Detector. J. Anal. Test. 4, 45–53 (2020). https://doi.org/10.1007/s41664-020-00121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00121-4

Keywords

Navigation