Skip to main content
Log in

CNT-Modified MIL-88(NH2)-Fe for Enhancing DNA-Regulated Peroxidase-Like Activity

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Over the past few decades, the enzyme-mimicking activity of metal–organic frameworks (MOFs) accompanied with structural characteristics has aroused much attention. However, pure MOFs have low affinity with DNA. Here, iron-based MOFs with acidized carbon nanotubes (CNTs) via a simple hydrothermal process have been synthesized, named as MIL-88(NH2)-Fe@CNTs. CNTs can enhance the affinity between MOF and DNA, achieving flexible regulation of their catalytic activity benefiting from the strong π − π stacking between CNTs and DNA. Meanwhile, in comparison with conventional iron-based MOFs, the addition of CNTs, which contributes to the acceleration of electron transfer, endowing as-prepared nanocomposites remarkably enhanced peroxidase-like activity to achieve an ultrasensitive detection of H2O2 with the LOD of 17.64 μg/L. Notably, the as-prepared nanocomposites with adsorbed DNA displayed excellent affinity towards both TMB (3, 3′, 5, 5′-tetramethylbenzidine) substrates and H2O2 as well as high catalytic velocity. On the basis of their switchable peroxidase-like activity regulated by different length or sequence of ssDNA, it is believed that our-prepared MOF-based nanomaterials would be promising for fabricating versatile and sensitive label-free colorimetric assays for diverse targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93.

    Article  CAS  PubMed  Google Scholar 

  2. Xia XH, et al. Pd-Ir Core-Shell Nanocubes: a Type of Highly Efficient and Versatile Peroxidase Mimic. ACS Nano. 2015;9(10):9994–10004.

    Article  CAS  PubMed  Google Scholar 

  3. Gao LZ, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  PubMed  Google Scholar 

  4. Kim CK, et al. Ceria Nanoparticles that can Protect against Ischemic Stroke. Angew Chem Int Ed. 2012;51(44):11039–43.

    Article  CAS  Google Scholar 

  5. Manea F, et al. Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew Chem Int Ed. 2004;43(45):6165–9.

    Article  CAS  Google Scholar 

  6. Song YJ, et al. Selective and quantitative cancer cell detection using target-directed functionalized graphene and its synergetic peroxidase-like activity. Chem Commun. 2011;47(15):4436–8.

    Article  CAS  Google Scholar 

  7. Zhang EH, et al. Porous Ce3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens Bioelectron. 2016;81:46–53.

    Article  CAS  PubMed  Google Scholar 

  8. Huxford RC, Della Rocca J, Lin WB. Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol. 2010;14(2):262–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev. 2018;47(7):2322–56.

    Article  CAS  PubMed  Google Scholar 

  10. Li WJ, et al. In Situ Growth of Metal-Organic Framework Thin Films with Gas Sensing and Molecule Storage Properties. Langmuir. 2013;29(27):8657–64.

    Article  CAS  PubMed  Google Scholar 

  11. Eddaoudi M, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science. 2002;295(5554):469–72.

    Article  CAS  PubMed  Google Scholar 

  12. Chen BL, et al. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angewe Chem Int Ed. 2009;48(3):500–3.

    Article  CAS  Google Scholar 

  13. Nath I, Chakraborty J, Verpoort F. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. Chem Soc Rev. 2016;45(15):4127–70.

    Article  CAS  PubMed  Google Scholar 

  14. Gao W, et al. A competitive coordination-based CeO2 nanowire-DNA nanosensor: fast and selective detection of hydrogen peroxide in living cells and in vivo. Chem Commun. 2016;52(18):3643–6.

    Article  CAS  Google Scholar 

  15. Qin FX, et al. Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection. Catal Sci Technol. 2013;3(10):2761–8.

    Article  CAS  Google Scholar 

  16. Wang SQ, et al. Copper-based metal organic framework nanoparticles with peroxidase-like activity for sensitive colorimetric detection of Staphylococcus aureus. ACS Appl Mater Interfaces. 2017;9(29):24440–5.

    Article  CAS  PubMed  Google Scholar 

  17. Yang LZ, et al. An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sens Actuators B-Chem. 2015;215:489–96.

    Article  CAS  Google Scholar 

  18. Jayasena SD. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem. 1999;45(9):1628–50.

    Article  CAS  PubMed  Google Scholar 

  19. Chen M, et al. A novel aptamer- metal ions- nanoscale MOF based electrochemical biocodes for multiple antibiotics detection and signal amplification. Sens Actuators B-Chem. 2017;242:1201–9.

    Article  CAS  Google Scholar 

  20. Fu Y, et al. DNA-Based platinum nanozymes for peroxidase mimetics. J Phys Chem C. 2014;118(31):18116–25.

    Article  CAS  Google Scholar 

  21. Ning WY, et al. Imparting designer biorecognition functionality to metal-organic frameworks by a dna-mediated surface engineering strategy. Small. 2018;14(11):8.

    Article  CAS  Google Scholar 

  22. Morris W, et al. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J Am Chem Soc. 2014;136(20):7261–4.

    Article  CAS  PubMed  Google Scholar 

  23. Kempahanumakkagari S, et al. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol Adv. 2018;36(2):467–81.

    Article  CAS  PubMed  Google Scholar 

  24. Zhai YP, et al. Carbon materials for chemical capacitive energy storage. Adv Mater. 2011;23(42):4828–50.

    Article  CAS  PubMed  Google Scholar 

  25. Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes–the route toward applications. Science. 2002;297(5582):787–92.

    Article  CAS  PubMed  Google Scholar 

  26. Xia Y, et al. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017;92:8–15.

    Article  CAS  PubMed  Google Scholar 

  27. Peyvandi A, et al. Surface-modified graphite nanomaterials for improved reinforcement efficiency in cementitious paste. Carbon. 2013;63:175–86.

    Article  CAS  Google Scholar 

  28. Shearer C, et al. Preparation and characterisation of vertically aligned single-walled carbon nanotube arrays on porous silicon. 2008; 7267.

  29. Kim K, et al. Characterization of oxygen containing functional groups on carbon materials with oxygen K-edge X-ray absorption near edge structure spectroscopy. Carbon. 2011;49(5):1745–51.

    Article  CAS  Google Scholar 

  30. Peng JB, et al. Catalytic effect of low concentration carboxylated multi-walled carbon nanotubes on the oxidation of disinfectants with Cl-substituted structure by a Fenton-like system. Chem Eng J. 2017;321:325–34.

    Article  CAS  Google Scholar 

  31. Li X, et al. POMOF/SWNT Nanocomposites with Prominent Peroxidase-Mimicking Activity for L-Cysteine “On Off Switch” Colorimetric Biosensing. ACS Appl Mater Interfaces. 2019;11(18):16896–904.

    Article  CAS  PubMed  Google Scholar 

  32. Wang XT, et al. Integration of membrane filtration and photoelectrocatalysis on g-C3N4/CNTs/Al2O3 membrane with visible-light response for enhanced water treatment. J Membr Sci. 2017;541:153–61.

    Article  CAS  Google Scholar 

  33. Horcajada P, et al. How linker’s modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. J Am Chem Soc. 2011;133(44):17839–47.

    Article  CAS  PubMed  Google Scholar 

  34. Xie DH, et al. Bifunctional NH2-MIL-88(Fe) metal-organic framework nanooctahedra for highly sensitive detection and efficient removal of arsenate in aqueous media. J Mater Chem A. 2017;5(45):23794–804.

    Article  CAS  Google Scholar 

  35. Sun ZJ, Jiang JZ, Li YF. A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system. Analyst. 2015;140(24):8201–8.

    Article  CAS  PubMed  Google Scholar 

  36. Bauer S, et al. High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system. Inorg Chem. 2008;47(17):7568–76.

    Article  CAS  PubMed  Google Scholar 

  37. Pham MH, et al. Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir. 2011;27(24):15261–7.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, et al. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants. Front Environ Sci Eng. 2019;13(2):11.

    CAS  Google Scholar 

  39. Tan B, et al. Fe3O4-AuNPs anchored 2D metal-organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale. 2017;9(47):18699–710.

    Article  CAS  PubMed  Google Scholar 

  40. Wang CH, Tang GG, Tan HL. Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim Acta. 2018;185(10):8.

    Google Scholar 

  41. Liu M, et al. Stimuli-responsive peroxidase mimicking at a smart graphene interface. Chem Commun. 2012;48(56):7055–7.

    Article  CAS  Google Scholar 

  42. Park KS, et al. Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small. 2011;7(11):1521–5.

    Article  CAS  PubMed  Google Scholar 

  43. Kim MI, Kim MS, Woo M-A, Ye Y, Kang KS, Lee J, Park HG. Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide–magnetic-platinum nanohybrids. Nanoscale. 2014;6(3):1529–36.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21777012), the Program of Introducing Talents of Discipline to Universities (B13012), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_13R05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 280 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Fan, Y., Du, J. et al. CNT-Modified MIL-88(NH2)-Fe for Enhancing DNA-Regulated Peroxidase-Like Activity. J. Anal. Test. 3, 238–245 (2019). https://doi.org/10.1007/s41664-019-00111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00111-1

Keywords

Navigation