Skip to main content
Log in

N-Acety-L-Cysteine-Stabilized Pt Nanozyme for Colorimetric Assay of Heparin

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

N-Acety-L-cysteine (NAC), enriched with multiple electron-rich groups involving –SH, –C=O, and –COOH, exhibits strong affinities to transition metal ions. Herein, NAC was adopted as the stabilizing agent to synthesize a series of peroxidase-like Pt nanoclusters (NCs) with different physicochemical properties. Both the cluster size and the charge state of NAC–Pt NCs are highly dependent upon the molar ratio of [K2PtCl4]/[NAC], contributing to different peroxidase mimicking activities. The most active Pt nanozyme (~ 1.7 nm), composed of 60% metallic Pt0 and 40% positively charged Pt2+ respectively, exhibits the Km of 0.132 mM for 3,3′,5,5′-tetramethylbenzidine and 35 mM for H2O2. Based on the heparin-activated enzymatic activity of NAC–Pt at pH 6.0, an ultrasensitive test was established for quantitative determination of heparin, giving the linear response of 0.5–20 μg/mL as well as the limit of detection of 2 × 10−3 μg/mL. This proposed method is also applicable in biological fluid for practical applications. Such a colorimetric method possesses several advantages involving high sensitivity, short response, eco-friendly synthesis, low consumption of material and energy, free of expensive instrument, as well as simple operation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rabenstein DL. Heparin and heparan sulfate: structure and function. Nat Prod Rep. 2002;19(3):312–31.

    Article  CAS  Google Scholar 

  2. Bergamaschini L, Rossi E, Vergani C, Simoni MGD. Alzheimer’s disease: another target for heparin therapy. Sci World J. 2009;9:891–908.

    Article  CAS  Google Scholar 

  3. Cao R, Li BX. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chem Commun. 2011;47(10):2865–7.

    Article  CAS  Google Scholar 

  4. Walker CPR, Royston D. Thrombin generation and its inhibition: a review of the scientific basis and mechanism of action of anticoagulant therapies. Br J Anaesth. 2002;88:848–63.

    Article  CAS  Google Scholar 

  5. Zhan RY, Fang Z, Liu B. Naked-eye detection and quantification of heparin in serum with a cationic polythiophene. Anal Chem. 2010;82:1326–33.

    Article  CAS  Google Scholar 

  6. Capila I, Linhardt RJ. Heparin–protein interactions. Angew Chem Int Ed. 2002;41:390–412.

    Article  CAS  Google Scholar 

  7. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol. 2008;26:669–75.

    Article  CAS  Google Scholar 

  8. Ding Y, Shi L, Wei H. A “turn on” fluorescent probe for heparin and its oversulfated chondroitin sulfate contaminant. Chem Sci. 2015;6:6361–6.

    Article  CAS  Google Scholar 

  9. Ding Y, Zhou M, Wei H. A supercharged fluorescent protein based FRET sensing platform for detection of heparin contamination. Anal Methods. 2017;9:5593–7.

    Article  CAS  Google Scholar 

  10. Hu Y, Guo W, Ding Y, Cheng H, Wei H. Modulating luminescence of Tb(3+) with biomolecules for sensing heparin and its contaminant OSCS. Biosens Bioelectron. 2016;86:858–63.

    Article  CAS  Google Scholar 

  11. Zhao JN, Yi YH, Mi NX, Yin BD, Wei MJ, Chen Q, Li HT, Zhang YY, Yao SZ. Gold nanoparticle coupled with fluorophore for ultrasensitive detection of protamine and heparin. Talanta. 2013;116:951–7.

    Article  CAS  Google Scholar 

  12. Zeng Y, Pei JJ, Wang LH, Shen AG, Hu JM. A sensitive sequential ‘on/off’ SERS assay for heparin with wider detection window and higher reliability based on the reversed surface charge changes of functionalized Au@Ag nanoparticles. Biosens Bioelectron. 2015;66:55–61.

    Article  CAS  Google Scholar 

  13. Yin MY, Duan ZQ, Zhang CX, Feng LP, Wan YQ, Cai YY, Liu H, Li S, Wang H. A visualized colorimetric detection strategy for heparin in serum using a metal-free polymer nanozyme. Microchem J. 2019;145:864–71.

    Article  CAS  Google Scholar 

  14. Fu XL, Chen LX, Li JH, Lin M, You HY, Wang WH. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide. Biosens Bioelectron. 2012;34:227–31.

    Article  CAS  Google Scholar 

  15. Qu F, Liu YQ, Lao HL, Wang YP, You JM. Colorimetric detection of heparin with high sensitivity based on the aggregation of gold nanoparticles induced by polymer nanoparticles. New J Chem. 2017;41(19):10592–7.

    Article  CAS  Google Scholar 

  16. Cheng HJ, Liu YF, Hu YH, Ding YB, Lin SC, Cao W, Wang Q, Wu JJX, Muhammad F, Zhao XZ, Zhao D, Li Z, Xing H, Wei H. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal Chem. 2017;89(21):11552–9.

    Article  CAS  Google Scholar 

  17. Chen ZG, Wang Z, Chen X, Xu HX, Liu JB. Chitosan-capped gold nanoparticles for selective and colorimetric sensing of heparin. J Nanopart Res. 2013;15:1930–9.

    Article  Google Scholar 

  18. Li Y, Sun HC, Shi FP, Cai N, Lu LH, Su XG. Multi-positively charged dendrimeric nanoparticles induced fluorescence quenching of graphene quantum dots for heparin and chondroitin sulfate detection. Biosens Bioelectron. 2015;74:284–90.

    Article  CAS  Google Scholar 

  19. Hemmateenejad B, Dorostkar S, Shakerizadeh SF, Shamsipur M. pH-independent optical sensing of heparin based on ionic liquid-capped gold nanoparticles. Analyst. 2013;138(17):4830–7.

    Article  CAS  Google Scholar 

  20. You JG, Wang YT, Tseng WL. Adenosine-related compounds as an enhancer for peroxidase-mimicking activity of nanomaterials: application to sensing of heparin level in human plasma and total sulfate glycosaminoglycan content in synthetic cerebrospinal fluid. ACS Appl Mater Inter. 2018;10(44):37846–54.

    Article  CAS  Google Scholar 

  21. Li J, Cheng M, Li MJ. A luminescent and colorimetric probe based on the functionalization of gold nanoparticles by ruthenium(ii) complexes for heparin detection. Analyst. 2017;142(19):3733–9.

    Article  CAS  Google Scholar 

  22. Li S, Huang PC, Wu FY. Highly selective and sensitive detection of heparin based on competition-modulated assembly and disassembly of fluorescent gold nanoclusters. New J Chem. 2017;41(2):717–23.

    Article  CAS  Google Scholar 

  23. Liu HL, Song PS, Wei RR, Li K, Tong AJ. A facile, sensitive and selective fluorescent probe for heparin based on aggregation-induced emission. Talanta. 2014;118:348–52.

    Article  CAS  Google Scholar 

  24. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76.

    Article  CAS  Google Scholar 

  25. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93.

    Article  CAS  Google Scholar 

  26. Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80(6):2250–4.

    Article  CAS  Google Scholar 

  27. He Y, Li X, Xu X, Pan J, Niu X. A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose. J Mater Chem B. 2018;6(36):5750–5.

    Article  CAS  Google Scholar 

  28. Niu X, Xu X, Li X, Pan J, Qiu F, Zhao H, Lan M. Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem Commun. 2018;54(95):13443–6.

    Article  CAS  Google Scholar 

  29. Wang X, Tang CL, Liu JJ, Zhang HZ, Wang J. Ultra-small CuS nanoparticles as peroxidase mimetics for sensitive and colorimetric detection of uric acid in human serum. Chin J Anal Chem. 2018;46(5):e1825–31.

    Article  Google Scholar 

  30. You JG, Liu YW, Lu CY, Tseng WL, Yu CJ. Colorimetric assay of heparin in plasma based on the inhibition of oxidase-like activity of citrate-capped platinum nanoparticles. Biosens Bioelectron. 2017;92:442–8.

    Article  CAS  Google Scholar 

  31. Hu LZ, Liao H, Feng LY, Wang M, Fu WS. Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity. Anal Chem. 2018;90(10):6247–52.

    Article  CAS  Google Scholar 

  32. Li XX, Zheng SS, Zou T, Zhang JL, Li W, Fu Y. Highly active Pd nanocatalysts regulated by biothiols for suzuki coupling reaction. Catal Lett. 2018;148(11):3325–34.

    Article  CAS  Google Scholar 

  33. Dai SD, Zhang JL, Fu Y, Li W. Biothiol-mediated synthesis of Pt nanoparticles on graphene nanoplates and their application in methanol electrooxidation. J Mater Sci. 2017;53(1):423–34.

    Article  Google Scholar 

  34. Kang YJ, Oh JW, Kim YR, Kim JS, Kim H. Chiral gold nanoparticle-based electrochemical sensor for enantioselective recognition of 3,4-dihydroxyphenylalanine. Chem Commun. 2010;46(31):5665–7.

    Article  CAS  Google Scholar 

  35. Zhang L, Hu Q, Li ZP, Zhang Y, Lu DT, Shuang SM, Choi MMF, Dong C. Chromatographic separation and mass spectrometric analysis of N-acetyl-l-cysteine-protected palladium nanoparticles. Anal Methods. 2017;9(31):4539–46.

    Article  CAS  Google Scholar 

  36. He SB, Deng HH, Liu AL, Li GW, Lin XH, Chen W, Xia XH. Synthesis and peroxidase-like activity of salt-resistant platinum nanoparticles by using bovine serum albumin as the scaffold. Chem Cat Chem. 2014;6(6):1543–8.

    CAS  Google Scholar 

  37. Farrag M. Preparation, characterization and photocatalytic activity of size selected platinum nanoclusters. J Photoch Photobio A. 2016;318:42–50.

    Article  CAS  Google Scholar 

  38. Shibu ES, Muhammed MAH, Tsukuda T, Pradeep T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: spectroscopy, kinetics, and luminescence. J Phys Chem C. 2008;112(32):12168–76.

    Article  CAS  Google Scholar 

  39. Ma Y, Pang Y, Liu F, Xu H, Shen X. Microwave-assisted ultrafast synthesis of silver nanoparticles for detection of Hg2+. Spectrochim Acta A. 2016;153:206–11.

    Article  CAS  Google Scholar 

  40. Li W, Zhang HX, Zhang JL, Fu Y. Synthesis and sensing application of glutathione-capped platinum nanoparticles. Anal Methods. 2015;7(11):4464–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (21878225, 21776215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3625 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, Q., Li, W. et al. N-Acety-L-Cysteine-Stabilized Pt Nanozyme for Colorimetric Assay of Heparin. J. Anal. Test. 3, 277–285 (2019). https://doi.org/10.1007/s41664-019-00108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00108-w

Keywords

Navigation