Skip to main content
Log in

RETRACTED ARTICLE: Carbon Dots as Artificial Peroxidases for Analytical Applications

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

This article was retracted on 23 March 2020

This article has been updated

Abstract

Nanozymes have become attractive in analytical and biomedical fields, mainly because of their low cost, long shelf life, and less environmental sensitivity. Particularly, nanozymes formed from nanomaterials having high surface area and rich active sites are interesting since their activities can be tuned through carefully controlling their size, morphology, and surface properties. This review article focuses on preparation of carbon dots (C dots) possessing peroxidase-like activity and their analytical applications. We highlight the important roles of the oxidation states and surface residues of C dots and their nanocomposites with metal, metal oxides, or metal sulfides playing on determining their specificity and sensitivity toward H2O2. Examples of C dot nanozymes (CDzymes) for developing sensitive and selective absorption, fluorescence, and electrochemical sensing systems in the presence of substrates are presented to show their potential in analytical applications. For example, CDzymes couple with glucose oxidase and cholesterol oxidase are specific and sensitive for quantitation of glucose and cholesterol, separately, when using 3,3′,5,5′-tetramethylbenzidine (TMB) as the signal probe. This review article concludes with possible strategies for enhancing and tuning the catalytic activity of CDzymes.

Article Highlights

  • Carbon dot nanozymes (CDzymes) possess peroxidase-like activity.

  • Low-cost and stable CDzymes based sensing systems are sensitive for quantitation of hydrogen peroxide.

  • CDzymes in conjunction with various enzymes have been used for quantitation of important analytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 23 March 2020

    The publisher has retracted this article [1] due to an operational error during the publication process. The authors agree with this retraction.

References

  1. Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G, Galleri G, et al. Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sens Basel. 2016;16:780.

    Google Scholar 

  2. Privman M, Guz N, Katz E. Enzyme-logic digital biosensors for biomedical applications. Int J Unconv Comput. 2018;13:435–76.

    Google Scholar 

  3. Azevedo AM, Martins VC, Prazeres DMF, Vojinović V, Cabral JMS, Fonseca LP. Horseradish peroxidase: a valuable tool in biotechnology. Biotechnol Annu Rev. Elsevier. 2003;9:199–247.

    CAS  Google Scholar 

  4. Lin YH, Ren JS, Qu XG. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47:1097–105.

    CAS  PubMed  Google Scholar 

  5. Zhou WH, Ding JS, Liu JW. Theranostic DNAzymes. Theranostics. 2017;7:1010–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang XY, Hu YH, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front. 2016;3:41–60.

    CAS  Google Scholar 

  7. Zhou YB, Liu BW, Yang RH, Liu JW. Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjugate Chem. 2017;28:2903–9.

    CAS  Google Scholar 

  8. Liu BW, Liu JW. Surface modification of nanozymes. Nano Res. 2017;10:1125–48.

    CAS  Google Scholar 

  9. Golchin J, Golchin K, Alidadian N, Ghaderi S, Eslamkhah S, Eslamkhah M, et al. Nanozyme applications in biology and medicine: an overview. Artif Cell Nanomed B. 2017;45:1069–76.

    CAS  Google Scholar 

  10. Yan XY. Nanozyme: a new type of artificial enzyme. Prog Biochem Biophys. 2018;45:101–4.

    Google Scholar 

  11. Li SR, Huang YC, Liu JR, Wang EK, Wei H. Nanozymes in analytical chemistry: from in vitro detection to live bioassays. Prog Biochem Biophys. 2018;45:129–47.

    Google Scholar 

  12. Huang YY, Lin YH, Pu F, Ren JS, Qu XG. The current progress of nanozymes in disease treatments. Prog Biochem Biophys. 2018;45:256–67.

    Google Scholar 

  13. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42:6060–93.

    CAS  PubMed  Google Scholar 

  14. Peng YH, Wang ZY, Liu WS, Zhang HL, Zuo W, Tang HA, et al. Size- and shape-dependent peroxidase-like catalytic activity of mnfe2o4 nanoparticles and their applications in highly efficient colorimetric detection of target cancer cells. Dalton Trans. 2015;44:12871–7.

    CAS  PubMed  Google Scholar 

  15. Lien CW, Huang CC, Chang HT. Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem Commun. 2012;48:7952–4.

    CAS  Google Scholar 

  16. Li CL, Huang CC, Chen WH, Chiang CK, Chang HT. Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood. Analyst. 2012;137:5222–8.

    CAS  PubMed  Google Scholar 

  17. Lien CW, Chen YC, Chang HT, Huang CC. Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale. 2013;5:8227–34.

    CAS  PubMed  Google Scholar 

  18. Hsu CL, Lien CW, Wang CW, Harroun SG, Huang CC, Chang HT. Immobilization of aptamer-modified gold nanoparticles on biocl nanosheets: tunable peroxidase-like activity by protein recognition. Biosens Bioelectron. 2016;75:181–7.

    CAS  PubMed  Google Scholar 

  19. Ju Y, Kim J. Dendrimer-encapsulated Pt nanoparticles with peroxidase-mimetic activity as biocatalytic labels for sensitive colorimetric analyses. Chem Commun. 2015;51:13752–5.

    CAS  Google Scholar 

  20. Zhou NA, Zou SY, Zou L, Shen RD, Zhou YM, Ling LS. Peroxidase-like activity of palladium nanoparticles on hydrogen-bond supramolecular structures over a broader pH range and their application in glucose sensing. Can J Chem. 2019;97:317–23.

    Google Scholar 

  21. Jiang H, Chen ZH, Cao HY, Huang YM. Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose. Analyst. 2012;137:5560–4.

    CAS  PubMed  Google Scholar 

  22. Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80:2250–4.

    CAS  PubMed  Google Scholar 

  23. Wang WJ, Wu YH, Lin XL, Chen W, Liu AL, Peng HP. Synthesis of Au-WS2 nanocomposites and study on its peroxidase mimic activity. Chin J Anal Chem. 2018;46:1545–51.

    CAS  Google Scholar 

  24. Hsu C-L, Lien C-W, Harroun SG, Ravindranath R, Chang H-T, Mao J-Y, et al. Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions. Mater Chem Front. 2017;1:893–9.

    CAS  Google Scholar 

  25. Asati A, Santra S, Kaittanis C, Nath S, Perez JM. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Edit. 2009;48:2308–12.

    CAS  Google Scholar 

  26. Wan Y, Qi P, Zhang D, Wu JJ, Wang Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron. 2012;33:69–74.

    CAS  PubMed  Google Scholar 

  27. Sun JH, Li CY, Qi YF, Guo SL, Liang X. Optimizing colorimetric assay based on V2O5 nanozymes for sensitive detection of H2O2 and glucose. Sens Basel. 2016;16:584.

    Google Scholar 

  28. Hsu KI, Lien CW, Lin CH, Chang HT, Huang CC. Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions. RSC Adv. 2014;4:37705–13.

    CAS  Google Scholar 

  29. Wu CW, Harroun SG, Lien CW, Chang HT, Unnikrishnan B, Lai IPJ, et al. Self-templated formation of aptamer-functionalized copper oxide nanorods with intrinsic peroxidase catalytic activity for protein and tumor cell detection. Sensor Actuat B-Chem. 2016;227:100–7.

    CAS  Google Scholar 

  30. Song W, Zhao B, Wang C, Ozaki Y, Lu XF. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B. 2019;7:850–75.

    CAS  PubMed  Google Scholar 

  31. Shin HY, Park TJ, Kim MI. Recent research trends and future prospects in nanozymes. J Nanomater. 2015. https://doi.org/10.1155/2015/756278.

    Article  Google Scholar 

  32. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    CAS  PubMed  Google Scholar 

  33. Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 2019. https://doi.org/10.1039/c8cs00718g.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cardenas-Benitez B, Djordjevic I, Hosseini S, Madou MJ, Martinez-Chapa SO. Review-covalent functionalization of carbon nanomaterials for biosensor applications: an update. J Electrochem Soc. 2018;165:B103–17.

    CAS  Google Scholar 

  35. Yang ZB, Ren J, Zhang ZT, Chen XL, Guan GZ, Qin LB, et al. Recent advancement of nanostructured carbon for energy applications. Chem Rev. 2015;115:5159–223.

    CAS  PubMed  Google Scholar 

  36. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013;42:2824–60.

    CAS  PubMed  Google Scholar 

  37. Notarianni M, Liu JZ, Vernon K, Motta N. Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J Nanotech. 2016;7:149–96.

    CAS  Google Scholar 

  38. Chen TH, Chang HT. Stable and photoswitchable carbon-dot liposome. ACS Appl Mater Inter. 2017;9:44259–63.

    CAS  Google Scholar 

  39. Gopi CVVM, Ravi S, Rao SS, Reddy AE, Kim HJ. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Sci Rep UK. 2017;7:46519.

    Google Scholar 

  40. Yang ZS, Chen CY, Liu CW, Li CL, Chang HT. Quantum dot-sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency. Adv Energy Mater. 2011;1:259–64.

    CAS  Google Scholar 

  41. Periasamy AP, Ravindranath R, Roy P, Wu WP, Chang HT, Veerakumar P, et al. Carbon-boron core-shell microspheres for the oxygen reduction reaction. J Mater Chem A. 2016;4:12987–94.

    CAS  Google Scholar 

  42. Wang ZH, Shen DK, Wu CF, Gu S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 2018;20:5031–57.

    CAS  Google Scholar 

  43. Wang QQ, Wei H, Zhang ZQ, Wang EK, Dong SJ. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. Trend Anal Chem. 2018;105:218–24.

    CAS  Google Scholar 

  44. Wu JJX, Wang XY, Wang Q, Lou ZP, Li SR, Zhu YY, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48:1004–76.

    CAS  PubMed  Google Scholar 

  45. Huang YY, Ren JS, Qu XG. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119:4357–412.

    CAS  PubMed  Google Scholar 

  46. Roy P, Chen PC, Periasamy AP, Chen YN, Chang HT. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today. 2015;18:447–58.

    CAS  Google Scholar 

  47. Atabaev TS. Doped Carbon dots for sensing and bioimaging applications: a minireview. Nanomater Basel. 2018;8:342.

    Google Scholar 

  48. Zuo PL, Lu XH, Sun ZG, Guo YH, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta. 2016;183:519–42.

    CAS  Google Scholar 

  49. Zhang J, Yu SH. Carbon Dots: large-scale synthesis, sensing and bioimaging. Mater Today. 2016;19:382–93.

    CAS  Google Scholar 

  50. Zhan J, Geng BJ, Wu K, Xu G, Wang L, Guo RY, et al. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence. Carbon. 2018;130:153–63.

    CAS  Google Scholar 

  51. Zhang WF, Xu T, Liu ZW, Wu NL, Wei MD. Hierarchical TiO2-X imbedded with graphene quantum dots for high-performance lithium storage. Chem Commun. 2018;54:1413–6.

    CAS  Google Scholar 

  52. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP. Photoluminescent carbogenic dots. Chem Mater. 2008;20:4539–41.

    CAS  Google Scholar 

  53. Zheng LY, Chi YW, Dong YQ, Lin JP, Wang BB. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc. 2009;131:4564–5.

    CAS  PubMed  Google Scholar 

  54. Zhu SJ, Song YB, Zhao XH, Shao JR, Zhang JH, Yang B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015;8:355–81.

    CAS  Google Scholar 

  55. Luo PJG, Sahu S, Yang ST, Sonkar SK, Wang JP, Wang HF, et al. Carbon “quantum” dots for optical bioimaging. J Mater Chem B. 2013;1:2116–27.

    CAS  PubMed  Google Scholar 

  56. Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128:7756–7.

    CAS  PubMed  Google Scholar 

  57. Wang X, Cao L, Yang ST, Lu FS, Meziani MJ, Tian LL, et al. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew Chem Int Edit. 2010;49:5310–4.

    CAS  Google Scholar 

  58. Dimos K. Carbon Quantum dots: surface passivation and functionalization. Curr Org Chem. 2016;20:682–95.

    CAS  Google Scholar 

  59. Li LB, Dong T. Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J Mater Chem C. 2018;6:7944–70.

    CAS  Google Scholar 

  60. Li CL, Ou CM, Huang CC, Wu WC, Chen YP, Lin TE, et al. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B. 2014;2:4564–71.

    CAS  PubMed  Google Scholar 

  61. Roy P, Periasamy AP, Lin CY, Her GM, Chiu WJ, Li CL, et al. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale. 2015;7:2504–10.

    CAS  PubMed  Google Scholar 

  62. Yang ST, Cao L, Luo PGJ, Lu FS, Wang X, Wang HF, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131:11308–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang CI, Wu WC, Periasamy AP, Chang HT. Electrochemical synthesis of photoluminescent carbon nanodots from glycine for highly sensitive detection of hemoglobin. Green Chem. 2014;16:2509–14.

    CAS  Google Scholar 

  64. Vedamalai M, Periasamy AP, Wang CW, Tseng YT, Ho LC, Shih CC, et al. Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale. 2014;6:13119–25.

    CAS  PubMed  Google Scholar 

  65. Miao P, Han K, Tang YG, Wang BD, Lin T, Cheng WB. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7:1586–95.

    CAS  PubMed  Google Scholar 

  66. Li HT, Kang ZH, Liu Y, Lee ST. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012;22:24230–53.

    CAS  Google Scholar 

  67. Hsu PC, Chang HT. Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem Commun. 2012;48:3984–6.

    CAS  Google Scholar 

  68. Hsu PC, Shih ZY, Lee CH, Chang HT. Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem. 2012;14:917–20.

    CAS  Google Scholar 

  69. Hsu PC, Chen PC, Ou CM, Chang HY, Chang HT. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J Mater Chem B. 2013;1:1774–81.

    CAS  PubMed  Google Scholar 

  70. Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun. 2012;48:8835–7.

    CAS  Google Scholar 

  71. Zhu LL, Yin YJ, Wang CF, Chen S. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J Mater Chem C. 2013;1:4925–32.

    CAS  Google Scholar 

  72. Sabet M, Mahdavi K. Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions. Appl Surf Sci. 2019;463:283–91.

    CAS  Google Scholar 

  73. Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019;21:449–71.

    CAS  Google Scholar 

  74. Siddique A, Pramanick AK, Chatterjee S, Ray M. Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol. Sci Rep UK. 2018;8:9770.

    Google Scholar 

  75. Zhu SJ, Wang L, Zhou N, Zhao XH, Song YB, Maharjan S, et al. The crosslink enhanced emission (cee) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem Commun. 2014;50:13845–8.

    CAS  Google Scholar 

  76. Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47:6695–7.

    CAS  Google Scholar 

  77. Long YJ, Wang XL, Shen DJ, Zheng HZ. Detection of glucose based on the peroxidase-like activity of reduced state carbon dots. Talanta. 2016;159:122–6.

    CAS  PubMed  Google Scholar 

  78. Sun HJ, Zhao AD, Gao N, Li K, Ren JS, Qu XG. Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Edit. 2015;54:7176–80.

    CAS  Google Scholar 

  79. Zhong QM, Chen YY, Qin X, Wang YL, Yuan CL, Xu YJ. Colorimetric enzymatic determination of glucose based on etching of gold nanorods by iodine and using carbon quantum dots as peroxidase mimics. Microchim Acta. 2019;186:161.

    Google Scholar 

  80. Nirala NR, Khandelwal G, Kumar B, Vinita Prakash R, Kumar V. One step electro-oxidative preparation of graphene quantum dots from wood charcoal as a peroxidase mimetic. Talanta. 2017;173:36–43.

    CAS  PubMed  Google Scholar 

  81. Wang H, Liu CQ, Liu Z, Ren JS, Qu XG. Specific oxygenated groups enriched graphene quantum dots as highly efficient enzyme mimics. Small. 2018;14:1703710.

    Google Scholar 

  82. Nirala NR, Abraham S, Kumar V, Bansal A, Srivastava A, Saxena PS. Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sens Actuat B Chem. 2015;218:42–50.

    CAS  Google Scholar 

  83. Lin LP, Song XH, Chen YY, Rong MC, Zhao TT, Wang YR, et al. Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal Chim Acta. 2015;869:89–95.

    CAS  PubMed  Google Scholar 

  84. Hu Y, Gao XJ, Zhu Y, Muhammad F, Tan S, Cao W, et al. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem Mater. 2018;30:6431–9.

    CAS  Google Scholar 

  85. Liu S, Tian JQ, Wang L, Luo YL, Sun XP. A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv. 2012;2:411–3.

    CAS  Google Scholar 

  86. Lin S, Zhang Y, Cao W, Wang X, Qin L, Zhou M, et al. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalton Trans. 2019;8:1993–9.

    Google Scholar 

  87. Shamsipur M, Safavi A, Mohammadpour Z. Indirect colorimetric detection of glutathione based on its radical restoration ability using carbon nanodots as nanozymes. Sensor Actuat B Chem. 2014;199:463–9.

    CAS  Google Scholar 

  88. Bano D, Kumar V, Singh VK, Chandra S, Singh DK, Yadav PK, et al. A facile and simple strategy for the synthesis of label free carbon quantum dots from the latex of euphorbia milli and its peroxidase-mimic activity for the naked eye detection of glutathione in a human blood serum. ACS Sustain Chem Eng. 2019;7:1923–32.

    CAS  Google Scholar 

  89. Zheng AX, Cong ZX, Wang JR, Li J, Yang HH, Chen GN. Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron. 2013;49:519–24.

    CAS  PubMed  Google Scholar 

  90. Yadav PK, Singh VK, Chandra S, Bano D, Kumar V, Talat M, et al. Green synthesis of fluorescent carbon quantum dots from azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits. ACS Biomater Sci Eng. 2019;5:623–32.

    CAS  PubMed  Google Scholar 

  91. Zhu WF, Zhang J, Jiang ZC, Wang WW, Liu XH. High-quality carbon dots: synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+. RSC Adv. 2014;4:17387–92.

    CAS  Google Scholar 

  92. Mohammadpour Z, Safavi A, Shamsipur M. A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics. Chem Eng J. 2014;255:1–7.

    CAS  Google Scholar 

  93. Wang B, Chen YF, Wu YY, Weng B, Liu YS, Li CM. Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta. 2016;183:2491–500.

    CAS  Google Scholar 

  94. Cao SS, Kang FF, Li P, Chen RF, Liu H, Wei Y. Photoassisted hetero-fenton degradation mechanism of acid blue 74 by a gamma-Fe2O3 catalyst. RSC Adv. 2015;5:66231–8.

    CAS  Google Scholar 

  95. Shete MD, Fernandes JB. A simple one step solid state synthesis of nanocrystalline ferromagnetic alpha-Fe2O3 with high surface area and catalytic activity. Mater Chem Phys. 2015;165:113–8.

    CAS  Google Scholar 

  96. Dong YM, Zhang JJ, Jiang PP, Wang GL, Wu XM, Zhao H, et al. Superior peroxidase mimetic activity of carbon dots-Pt nanocomposites relies on synergistic effects. New J Chem. 2015;39:4141–6.

    CAS  Google Scholar 

  97. Zheng C, Ke WJ, Yin TX, An XQ. Intrinsic peroxidase-like activity and the catalytic mechanism of gold@carbon dots nanocomposites. RSC Adv. 2016;6:35280–6.

    CAS  Google Scholar 

  98. Guo YL, Liu XY, Wang XD, Iqbal A, Yang CD, Liu WS, et al. Carbon dot/nial-layered double hydroxide hybrid material: facile synthesis, intrinsic peroxidase-like catalytic activity and its application. RSC Adv. 2015;5:95495–503.

    CAS  Google Scholar 

  99. Hassanzadeh J, Khataee A. Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta. 2018;178:992–1000.

    CAS  PubMed  Google Scholar 

  100. Chen SH, Chi MQ, Yang ZZ, Gao M, Wang C, Lu XF. Carbon dots/Fe3O4 hybrid nanofibers as efficient peroxidase mimics for sensitive detection of h2o2 and ascorbic acid. Inorg Chem Front. 2017;4:1621–7.

    CAS  Google Scholar 

  101. Yousefinejad S, Rasti H, Hajebi M, Kowsari M, Sadravi S, Honarasa F. Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2 in nanomolar level. Sensor Actuat B Chem. 2017;247:691–6.

    CAS  Google Scholar 

  102. Zhang L, Hai X, Xia C, Chen XW, Wang JH. Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sensor Actuat B Chem. 2017;248:374–84.

    CAS  Google Scholar 

  103. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.

    CAS  Google Scholar 

  104. Liu WY, Yang HM, Ma C, Ding YN, Ge SG, Yu JH, et al. Graphene-palladium nanowires based electrochemical sensor using ZnFe2O4-graphene quantum dots as an effective peroxidase mimic. Anal Chim Acta. 2014;852:181–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Ministry of Science and Technology (MOST) of Taiwan for providing financial support for this study under contracts 107-2113-M-002-015-MY3, and MOST 107-2113-M-018-005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang-Wei Lin or Huan-Tsung Chang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

The publisher has retracted this article due to an operational error during the publication process. The authors agree with this retraction.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, SC., Lin, YW. & Chang, HT. RETRACTED ARTICLE: Carbon Dots as Artificial Peroxidases for Analytical Applications. J. Anal. Test. 3, 191–205 (2019). https://doi.org/10.1007/s41664-019-00107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00107-x

Keywords

Navigation