Skip to main content

Advertisement

Log in

Scalable Methods for Device Patterning as an Outstanding Challenge in Translating Paper-Based Microfluidics from the Academic Benchtop to the Point-of-Care

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Paper-based microfluidic devices offer unparalleled adaptability for the development of low-cost, point-of-care analytical tests. The potential for these devices to drastically improve access to healthcare around the globe is obvious, but very few tests have found success in clinical environments. Here, we identify manufacturing—specifically, methods to pattern paper devices at large scales—as a major barrier to translating prototype paper-based devices from the academic benchtop to the field. We introduce current methods used to pattern papers and discuss their utility as means to prototype and manufacture paper-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adapted from The Immunoassay Handbook, O’Farrell B [19], Copyright (2013) with permission from Elsevier

Fig. 2

Adapted from [28] with permissions from John Wiley and Sons

Fig. 3

Adapted from [33] with permission from John Wiley and Sons. Adapted from [55] with permission from The Royal Society of Chemistry

Fig. 4

Adapted with permission from Olkkonen et al. [30], Copyright (2010) American Chemical Society

Fig. 5

Adapted from [63] with permission from The Royal Society of Chemistry

Fig. 6
Fig. 7

Adapted with permission from Amin et al. [66], Copyright (2017) American Chemical Society. Adapted with permission from [67]

Fig. 8

Adapted from [69] with permission of The Royal Society of Chemistry

Fig. 9

Adapted from [71] with permission from The Royal Society of Chemistry

Fig. 10

Adapted with permission from Carrilho et al. [74], Copyright (2009) American Chemical Society

Similar content being viewed by others

References

  1. Research and Markets. Point-of-care/rapid diagnostics market by testing (glucose, lipids, HbA1c, HCV, HIV, influenza, urinalysis, hematology, cancer, pregnancy, PT/INR), platform (lateral flow, immunoassay), mode (prescription, OTC), end-user—global forecast to 2022. https://www.researchandmarkets.com/research/2bs635/global?w=5. Accessed 20 Nov 2018.

  2. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH. Microfluidic diagnostic technologies for global public health. Nature. 2006;442:412–8.

    Article  CAS  PubMed  Google Scholar 

  3. Peeling RW, Holmes KK, Mabey D, Ronald A. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect. 2006;82:v1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sher M, Zhuang R, Demirci U, Asghar W. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn. 2017;17:351–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma S, Zapatero-Rodrigues J, Estrela P, O’Kennedy R. Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors. 2015;5:577–601.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Niemeier D, Gombachika H, Richards-Kortum R. How to transform the practice of engineering to meet global health needs. Science. 2014;345:1287–90.

    Article  CAS  PubMed  Google Scholar 

  7. Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406:3263–77.

    Article  CAS  PubMed  Google Scholar 

  8. Thom NK, Lewis GG, Yeung K, Phillips ST. Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Adv. 2014;4:1334–40.

    Article  CAS  PubMed  Google Scholar 

  9. Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10:3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)—a review. Anal Chim Acta. 2017;970:1–22.

    Article  CAS  PubMed  Google Scholar 

  11. Duchesne L, Lacombe K. Innovative technologies for point-of-care testing of viral hepatitis in low-resource and decentralized settings. J Viral Hepat. 2018;25:108–17.

    Article  CAS  PubMed  Google Scholar 

  12. Volpatti LR, Yetisen AK. Commercialization of microfluidic devices. Trends Biotechnol. 2014;32:347–50.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar AA, Hennek JW, Smith BS, Kumar S, Beattie P, Rolland J, Stossel TP, Chunda-Liyoka C, Whitesides GM. From the bench to the field in low-cost diagnostics: two case studies. Angew Chem Int Ed. 2015;54:5836–53.

    Article  CAS  Google Scholar 

  14. Chiu DT, Demello AJ, Di Carlo D, Doyle PS, Hansen C, Maceiczyk RM, Wootton RCR. Small but perfectly formed? Successes Chall Oppor Microfluid Chem Biol Sci. 2017;2:201–23.

    CAS  Google Scholar 

  15. Caicedo HH, Brady ST. Microfluidics: the challenge is to bridge the gap instead of looking for a “killer app”. Trends Biotechnol. 2016;34:1–3.

    Article  CAS  PubMed  Google Scholar 

  16. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–9.

    Article  CAS  PubMed  Google Scholar 

  17. Fernandes SC, Walz JA, Wilson DJ, Brooks JC, Mace CR. Beyond wicking: expanding the role of patterned paper as the foundation for an analytical platform. Anal Chem. 2017;89:5654–64.

    Article  CAS  PubMed  Google Scholar 

  18. Mace CR, Deraney RN. Manufacturing prototypes for paper-based diagnostic devices. Microfluid Nanofluid. 2014;16:801–9.

    Article  CAS  Google Scholar 

  19. O’Farrell B. Lateral flow immunoassay systems: evolution from the current state of the art to the next generation of highly sensitive, quantitative rapid assays. In: Wild D, editor. The immunoassay handbook. Oxford: Elsevier; 2013. p. 89–107.

    Chapter  Google Scholar 

  20. Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82:3–10.

    Article  CAS  PubMed  Google Scholar 

  21. Feng L, Li X, Li H, Yang W, Chen L, Guan Y. Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions. Anal Chim Acta. 2013;780:74–80.

    Article  CAS  PubMed  Google Scholar 

  22. Zhong ZW, Wang ZP, Huang GXD. Investigation of wax and paper materials for the fabrication of paper-based microfluidic devices. Microsyst Technol. 2012;18:649–59.

    Article  Google Scholar 

  23. Al-Tamimi M, Shen W, Zeineddine R, Tran H, Garnier G. Validation of paper-based assay for rapid blood typing. Anal Chem. 2012;84:1661–8.

    Article  CAS  PubMed  Google Scholar 

  24. Carrilho E, Phillips ST, Vella SJ, Martinez AW, Whitesides GM. Paper microzone plates. Anal Chem. 2009;81:5990–8.

    Article  CAS  PubMed  Google Scholar 

  25. Howie SR. Blood sample volumes in child health research: review of safe limits. Bull World Health Organ. 2011;89:46–53.

    Article  PubMed  Google Scholar 

  26. Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13:2210.

    Article  CAS  PubMed  Google Scholar 

  27. Xu C, Cai L, Zhong M, Zheng S. Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink. RSC Adv. 2015;5:4770–3.

    Article  CAS  Google Scholar 

  28. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;46:1318–20.

    Article  CAS  Google Scholar 

  29. Xu Y, Liu M, Kong N, Liu J. Lab-on-paper micro- and nano-analytical devices: fabrication, modification, detection and emerging applications. Microchim Acta. 2016;183:1521–42.

    Article  CAS  Google Scholar 

  30. Olkkonen J, Lehtinen K, Erho T. Flexographically printed fluidic structures in paper. Anal Chem. 2010;82:10246–50.

    Article  CAS  PubMed  Google Scholar 

  31. Dungchai W, Chailapakul O, Henry CS. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst. 2011;136:77–82.

    Article  CAS  PubMed  Google Scholar 

  32. Curto VF, Lopez-Ruiz N, Capitan-Vallvey LF, Palma AJ, Benito-Lopez F, Diamond D. Fast prototyping of paper-based microfluidic devices by contact stamping using indelible ink. RSC Adv. 2013;3:18811.

    Article  CAS  Google Scholar 

  33. Yamada K, Henares TG, Suzuki K, Citterio D. Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed. 2015;54:5294–310.

    Article  CAS  Google Scholar 

  34. Singh A, Lantigua D, Meka A, Taing S, Pandher M, Camci-Unal G, Singh AT, Lantigua D, Meka A, Taing S, Pandher M, Camci-Unal G. Paper-based sensors: emerging themes and applications. Sensors. 2018;18:2838.

    Article  Google Scholar 

  35. Gong MM, Sinton D. Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem Rev. 2017;117:8447–80.

    Article  CAS  PubMed  Google Scholar 

  36. Yamada K, Shibata H, Suzuki K, Citterio D. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip. 2017;17:1206–49.

    Article  CAS  PubMed  Google Scholar 

  37. Greener J. Roll-to-roll manufacturing: an overview. In: Greener J, Pearson G, Cakmak M, editors. Roll-to-roll manufacturing: process elements and recent advances. Hoboken: Wiley; 2018. p. 1–17.

    Chapter  Google Scholar 

  38. Szentgyörgyvölgyi R. Gravure Printing. In: Izdebska J, Thomas S, editors. Printing on polymers. Oxford: William Andrew Publishing; 2016. p. 199–215.

    Chapter  Google Scholar 

  39. Izdebska J. Flexographic Printing. In: Izdebska J, Thomas S, editors. Printing on polymers. Oxford: William Andrew Publishing; 2016. p. 179–97.

    Chapter  Google Scholar 

  40. Pavlović Ž, Dedijer S, Draganov S, Karlović I, Jurič I. Offset Printing. In: Izdebska J, Thomas S, editors. Printing on polymers. Oxford: William Andrew Publishing; 2016. p. 217–29.

    Chapter  Google Scholar 

  41. Novaković D, Kašiković N, Vladić G, Pál M. Screen Printing. In: Izdebska J, Thomas S, editors. Printing on polymers. Oxford: William Andrew Publishing; 2016. p. 247–61.

    Chapter  Google Scholar 

  42. Gonzalez-Macia L, Killard AJ. Screen printing and other scaleable point of care (POC) biosensor processing technologies. In: Narayan RJ, editor. Medical biosensors for point of care (POC) applications. Duxford: Woodhead; 2017. p. 69–98.

    Chapter  Google Scholar 

  43. Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. Immunochromatographic methods in food analysis. Trends Anal Chem. 2014;55:81–93.

    Article  CAS  Google Scholar 

  44. Songjaroen T, Dungchai W, Chailapakul O, Laiwattanapaisal W. Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta. 2011;85:2587–93.

    Article  CAS  PubMed  Google Scholar 

  45. Xia Y, Si J, Li Z. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron. 2016;77:774–89.

    Article  CAS  PubMed  Google Scholar 

  46. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87:19–41.

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Tian J, Garnier G, Shen W. Fabrication of paper-based microfluidic sensors by printing. Colloids Surf B Biointerfaces. 2010;76:564–70.

    Article  CAS  PubMed  Google Scholar 

  48. Akyazi T, Basabe-Desmonts L, Benito-Lopez F. Review on microfluidic paper-based analytical devices towards commercialization. Anal Chim Acta. 2018;1001:1–17.

    Article  CAS  PubMed  Google Scholar 

  49. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip. 2008;8:2146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He Y, Wu Y, Fu J-Z, Wu W-B. Fabrication of paper-based microfluidic analysis devices: a review. RSC Adv. 2015;5:78109–27.

    Article  CAS  Google Scholar 

  51. OuYang L, Wang C, Du F, Zheng T, Liang H. Electrochromatographic separations of multi-component metal complexes on a microfluidic paper-based device with a simplified photolithography. RSC Adv. 2014;4:1093–101.

    Article  CAS  Google Scholar 

  52. Wu Y, Xue P, Kang Y, Hui KM. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal Chem. 2013;85:8661–8.

    Article  CAS  PubMed  Google Scholar 

  53. He Q, Ma C, Hu X, Chen H. Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning. Anal Chem. 2013;85:1327–31.

    Article  CAS  PubMed  Google Scholar 

  54. Songok J, Tuominen M, Teisala H, Haapanen J, Mäkelä J, Kuusipalo J, Toivakka M. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow. ACS Appl Mater Interfaces. 2014;6:20060–6.

    Article  CAS  PubMed  Google Scholar 

  55. Maejima K, Tomikawa S, Suzuki K, Citterio D. Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv. 2013;3:9258.

    Article  CAS  Google Scholar 

  56. Abe K, Suzuki K, Citterio D. Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem. 2008;80:6928–34.

    Article  CAS  PubMed  Google Scholar 

  57. Rajendra V, Sicard C, Brennan JD, Brook MA. Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers. Analyst. 2014;139:6361–5.

    Article  CAS  PubMed  Google Scholar 

  58. Shi ZZ, Lu Y, Yu L. Microfluidic paper-based analytical devices for point-of-care diagnosis. Next generation point-of-care biomedical sensors technologies for cancer diagnosis. Singapore: Springer; 2017. p. 365–96.

    Chapter  Google Scholar 

  59. Phillips CO, Govindarajan S, Hambyln SM, Conlan RS, Gethin DT, Claypole TC. Patterning of antibodies using flexographic printing. Langmuir. 2012;28:9878–84.

    Article  CAS  PubMed  Google Scholar 

  60. Renault C, Li X, Fosdick SE, Crooks RM. Hollow-channel paper analytical devices. Anal Chem. 2013;85:7976–9.

    Article  CAS  PubMed  Google Scholar 

  61. Sriram G, Bhat MP, Patil P, Uthappa UT, Jung H, Altalhi T, Kumeria T, Aminabhavi M, Pai RK, Madhuprasad Kurkuri MD. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: a review. Trends Anal Chem. 2017;93:212e227.

    Article  CAS  Google Scholar 

  62. Mohammadi S, Maeki M, Mohamadi RM, Ishida A, Tani H, Tokeshi M. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing. Analyst. 2015;140:6493e6499.

    Article  CAS  Google Scholar 

  63. Sameenoi Y, Nongkai PN, Nouanthavong S, Henry C, Nacapricha D. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication. Analyst. 2014;139:6580–8.

    Article  CAS  PubMed  Google Scholar 

  64. Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA. 2008;105:19606–11.

    Article  PubMed  Google Scholar 

  65. Walsh DI, Kong DS, Murthy SK, Carr PA. Enabling microfluidics: from clean rooms to makerspaces. Trends Biotechnol. 2017;35:383–92.

    Article  CAS  PubMed  Google Scholar 

  66. Amin R, Ghaderinezhad F, Li L, Lepowsky E, Yenilmez B, Knowlton S, Tasoglu S. Continuous-ink, multiplexed pen-plotter approach for low-cost, high-throughput fabrication of paper-based microfluidics. Anal Chem. 2017;89:63551–7.

    Article  CAS  Google Scholar 

  67. Ghaderinezhad F, Amin R, Temirel M, Yenilmez B, Wentworth A, Tasoglu S. High-throughput rapid-prototyping of low-cost paper-based microfluidics. Sci Rep. 2017;7:3553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing of PDMS barriers to define microchannels in paper. Anal Chem. 2008;80:3387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de Tarso Garcia P, Garcia Cardoso TM, Garcia CD, Carrilho E, Tomazelli Coltro WK. A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Adv. 2014;4(37637):4.

    Google Scholar 

  70. Zhang Y, Zhou C, Nie J, Le S, Quin Q, Liu F, Li Y, Li J. Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Anal Chem. 2014;86:2005–12.

    Article  CAS  PubMed  Google Scholar 

  71. Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W. Blood separation on microfluidic paper-based analytical devices. Lab Chip. 2012;12:3392–8.

    Article  CAS  PubMed  Google Scholar 

  72. Lu Y, Shi W, Jiang L, Qin J, Lin B. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis. 2009;30:1–4.

    Article  Google Scholar 

  73. DeChiara NS, Wilson DJ, Mace CR. An open software platform for the automated design of paper-based microfluidic devices. Sci Rep. 2017;7:16224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Carrilho E, Martinez AW, Whitesides GW. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 2009;81(16):7091–5.

    Article  CAS  PubMed  Google Scholar 

  75. Fernandes SC, Wilson DJ, Mace CR. Fabrication of three-dimensional paper-based microfluidic devices for immunoassays. J Vis Exp. 2017;121:e55287.

    Google Scholar 

  76. Liu H, Crooks RM. Three-dimensional paper microfluidic devices assembled using the principles of origami. J Am Chem Soc. 2011;133:17564–6.

    Article  CAS  PubMed  Google Scholar 

  77. Li X, Liu XY. Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluid Nanofluidics. 2014;16:819–27.

    Article  CAS  Google Scholar 

  78. Berry SB, Fernandes SC, Rajartnam A, DeChiara NS, Mace CR. Measurement of the hematocrit using paper-based microfluidic devices. Lab Chip. 2016;16:3689–94.

    Article  CAS  PubMed  Google Scholar 

  79. Li X, Zwanenburg P, Liu X. Magnetic timing valves for fluid control in paper-based microfluidics. Lab Chip. 2013;13:2609–14.

    Article  CAS  PubMed  Google Scholar 

  80. Noh H, Phillips ST. Fluidic timers for time-dependent, point-of-care assays on paper. Anal Chem. 2010;82:8071–8.

    Article  CAS  PubMed  Google Scholar 

  81. Thom NK, Yeung K, Pillion MB, Phillips ST. Fluidic-batteries’ as low-cost sources of power in paper- based microfluidic devices. Lab Chip. 2012;12:1768–70.

    Article  CAS  PubMed  Google Scholar 

  82. Connelly JT, Rolland JP, Whitesides GM. “Paper Machine” for molecular diagnostics. Anal Chem. 2015;87:7595–601.

    Article  CAS  PubMed  Google Scholar 

  83. International Organization for Standardization. ISO 13485:2016, medical devices, quality management systems, requirements for regulatory purposes.

  84. US Food & Drug Administration. 21 CFR 820, quality system (QS) regulation/medical device good manufacturing practices.

Download references

Acknowledgements

This work was supported by Tufts University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Mace.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, J.C., Mace, C.R. Scalable Methods for Device Patterning as an Outstanding Challenge in Translating Paper-Based Microfluidics from the Academic Benchtop to the Point-of-Care. J. Anal. Test. 3, 50–60 (2019). https://doi.org/10.1007/s41664-019-00093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00093-0

Keywords

Navigation