Skip to main content

Green Extraction of Bioactive Compounds from Microalgae

Abstract

At present, there is an increasing demand for natural bioactive compounds able to provide health benefits when included and consumed in a functional food or in a nutraceutical. In this regard, microalgae are promising natural sources with great potential, not only considering that these organisms are largely underexplored, but also because microalgae can be produced at large scale and their chemical composition might be tuned to over-synthesize a particular target compound. The use of advanced sustainable extraction techniques to recover these bioactive compounds is a must nowadays. This work presents an overview on the use of compressed fluid-based extraction techniques to obtain bioactive compounds from microalgae that can be seen also as a first step towards its recovery at larger scale. When relevant, the description of the analytical procedure used to chemically characterize the bioactive compounds is also included.

This is a preview of subscription content, access via your institution.

Fig. 1

Modified from [26] with permission from Elsevier

Fig. 2

Modified from [46] with permission from Elsevier

Fig. 3

References

  1. Herrero M, Sánchez-Camargo AP, Cifuentes A, Ibáñez E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Anal Chem. 2015;71:26–38.

    CAS  Article  Google Scholar 

  2. Arshadi M, Attard TM, Lukasik RM, Brncic M, da Costa Lopes AM, Finell M, Geladi P, Gerschenson LN, Gogus F, Herrero M, Hunt AJ, Ibáñez E, Kamm B, Mateos-Aparicio I, Matias A, Mavroudis NE, Montoneri E, Morais ARC, Nilsson C, Papaioannou EH, Richel A, Rupérez P, Škrbić B, Bodroža Solarov M, Švarc-Gajić J, Waldron KW, Yuste-Córdoba FJ. Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem. 2016;18:6160–204.

    CAS  Article  Google Scholar 

  3. Herrero M, Ibáñez E. Green extraction processes, biorefineries and sustainability: recovery of high added-value products from natural sources. J Supercrit Fluids. 2018;134:252–9.

    CAS  Article  Google Scholar 

  4. Anastas PT, Warner JC. Green chemistry: theory and practice. New York: Oxford University Press; 1998.

    Google Scholar 

  5. Chemat F, Vian MA, Cravotto G. Green extraction of natural products: concept and principles. Int J Mol Sci. 2012;13:8615–27.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Herrero M, Castro-Puyana M, Mendiola JA, Ibáñez E. Compressed fluids for the extraction of bioactive compounds. Trends Anal Chem. 2013;43:67–83.

    CAS  Article  Google Scholar 

  7. Plaza M, Turner C. Pressurized hot water extraction of bioactives. Trends Anal Chem. 2015;71:39–54.

    CAS  Article  Google Scholar 

  8. Yen HW, Yang SC, Chen CH, Jesisca, Chang JS. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresour Technol. 2015;184:291–6.

    CAS  Article  PubMed  Google Scholar 

  9. Solana M, Rizza CS, Bertucco A. Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. J Supercrit Fluids. 2014;92:311–8.

    CAS  Article  Google Scholar 

  10. Mendiola JA, Santoyo S, Cifuentes A, Reglero G, Ibáñez E, Señoráns FJ. Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. J Food Prot. 2008;71:2138–43.

    CAS  Article  PubMed  Google Scholar 

  11. Couto RM, Simões PC, Reis A, Da Silva TL, Martins VH, Sánchez-Vicente Y. Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci. 2010;10:158–64.

    CAS  Google Scholar 

  12. Safi C, Camy S, Frances C, Montero Varela M, Calvo Badia E, Pontalier PY, Vaca-Garcia C. Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance. J Appl Phycol. 2014;26:1711–8.

    CAS  Article  Google Scholar 

  13. Gilbert-López B, Mendiola JA, Fontecha J, van den Broek LAM, Sijtsma L, Cifuentes A, Herrero M, Ibáñez E. Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery. Green Chem. 2015;17:4599–609.

    Article  CAS  Google Scholar 

  14. Bong SC, Loh SP. A study of fatty acid composition and tocopherol content of lipid extracted from marine microalgae, Nannochloropsis oculata and Tetraselmis suecica, using solvent extraction and supercritical fluid extraction. Int Food Res J. 2013;20:721–9.

    CAS  Google Scholar 

  15. Lorenzen J, Igl N, Tippelt M, Stege A, Qoura F, Sohling U, Brück T. Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng. 2017;40:911–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Catchpole O, Ryan J, Zhu Y, Fenton K, Grey J, Vyssotski M, MacKenzie A, Nekrasov E, Mitchell K. Extraction of lipids from fermentation biomass using near-critical dimethylether. J Supercrit Fluids. 2010;53:34–41.

    CAS  Article  Google Scholar 

  17. Dejoye C, Vian MA, Lumia G, Bouscarle C, Charton F, Chemat F. Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction. Int J Mol Sci. 2011;12:9332–41.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Tommasi E, Cravotto G, Galletti P, Grillo G, Mazzotti M, Sacchetti G, Samorì C, Tabasso S, Tacchini M, Tagliavini E. Enhanced and selective lipid extraction from the microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain Chem Eng. 2017;5:8316–22.

    CAS  Article  Google Scholar 

  19. Tang S, Qin C, Wang H, Li S, Tian S. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J Supercrit Fluids. 2011;57:44–9.

    CAS  Article  Google Scholar 

  20. Crampon C, Mouahid A, Toudji S-AA, Lépine O, Badens E. Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. J Supercrit Fluids. 2013;79:337–44.

    CAS  Article  Google Scholar 

  21. Sovová H, Nobre B, Palavra A. Modeling of the kinetics of supercritical fluid extraction of lipids from microalgae with emphasis on extract desorption. Materials. 2016;9:423.

    Article  CAS  PubMed Central  Google Scholar 

  22. Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur J Lipid Sci Technol. 2005;107:381–6.

    CAS  Article  Google Scholar 

  23. Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med. 2014;72:76–90.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Santoyo S, Jaime L, Plaza M, Herrero M, Rodriguez-Meizoso I, Ibáñez E, Reglero G. Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J Appl Phycol. 2012;24:731–41.

    CAS  Article  Google Scholar 

  25. Plaza M, Santoyo S, Jaime L, Avalo B, Cifuentes A, Reglero G, García-Blairsy Reina G, Señoráns FJ, Ibáñez E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci Technol. 2012;46:245–53.

    CAS  Article  Google Scholar 

  26. Pieber S, Schober S, Mittelbach M. Pressurized fluid extraction of polyunsaturated fatty acids from the microalga Nannochloropsis oculata. Biomass Bioenerg. 2012;47:474–82.

    CAS  Article  Google Scholar 

  27. Golmakani M-T, Mendiola JA, Rezaei K, Ib Nez E. Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J Supercrit Fluids. 2014;92:1–7.

    CAS  Article  Google Scholar 

  28. Rodríguez-Meizoso I, Jaime L, Santoyo S, Señoráns FJ, Cifuentes A, Ibáñez E. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal. 2010;51:456–63.

    Article  CAS  PubMed  Google Scholar 

  29. Templeton DW, Quinn M, Van Wychen S, Hyman D, Laurens LML. Separation and quantification of microalgal carbohydrates. J Chromatogr A. 2012;1270:225–34.

    CAS  Article  PubMed  Google Scholar 

  30. De Jesus Raposo MF, de Morais AM, de Morais RM. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs. 2015;13:2967–3028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Jesus Raposo MF, de Morais RM, de Morais AM. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs. 2013;11:233–52.

    Article  PubMed Central  Google Scholar 

  32. Zhao C, Wu Y, Yang C, Liu B, Huang Y. Hypotensive, hypoglycaemic and hypolipidaemic effects of bioactive compounds from microalgae and marine micro-organisms. Int J Food Sci Technol. 2015;50:1705–17.

    CAS  Article  Google Scholar 

  33. Ventura SPM, Nobre BP, Ertekin F, Hayes M, Garciá-Vaquero M, Vieira F, Koc MM, Gouveia L, Aires-Barros, Palavra AMF. Extraction of value-added compounds from microalgae. In: Muñoz R, Gonzalez-Fernandez C, editors. Microalgae-based biofuels and bioproducts. New York: Elsevier; 2017. p. 461–83.

    Chapter  Google Scholar 

  34. Zakaria SM, Mustapa Kamal SM, Harun MR, Omar R, Siajam SI. Extraction of antioxidants from Chlorella sp. using subcritical water treatment. Mater Sci Eng. 2017;206:12035.

    Google Scholar 

  35. Awaluddin SA, Thiruvenkadam S, Izhar S, Hiroyuki Y, Danquah MK, Harun R. Subcritical water technology for enhanced extraction of biochemical compounds from Chlorella vulgaris. Biomed Res Int. 2016. https://doi.org/10.1155/2016/5816974

    Article  PubMed  PubMed Central  Google Scholar 

  36. Walsh G. Proteins: biochemistry and biotechnology, vol. 2. Hoboken: John Wiley & Sons; 2014.

    Google Scholar 

  37. Clark DP, Pazdernik NJ. Molecular biology. 2nd ed. Oxford: Academic Press; 2013.

    Google Scholar 

  38. Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P. Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol. 2013;40:781–96.

    CAS  Article  PubMed  Google Scholar 

  39. Samarakoon K, Jeon Y-J. Bio-functionalities of proteins derived from marine algae—a review. Food Res Int. 2012;48:948–60.

    CAS  Article  Google Scholar 

  40. Gilbert-López B, Barranco A, Herrero M, Cifuentes A, Ibáñez E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res Int. 2017;99:1056–65.

    Article  CAS  PubMed  Google Scholar 

  41. Gilbert-López B, Mendiola JA, van den Broek LAM, Houweling-Tan B, Sijtsma L, Cifuentes A, Herrero M, Ibáñez E. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017;24:111–21.

    Article  Google Scholar 

  42. Domínguez H. Functional ingredients from algae for foods and nutraceuticals. 1st ed. Amsterdam: Elsevier; 2013.

    Book  Google Scholar 

  43. Gong M, Bassi A. Carotenoids from microalgae: a review of recent developments. Biotechnol Adv. 2016;34:1396–412.

    CAS  Article  PubMed  Google Scholar 

  44. Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8:2672–85.

    CAS  Article  PubMed  Google Scholar 

  45. Sathasivam R, Ki JS. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs. 2018;16:26.

    Article  PubMed Central  Google Scholar 

  46. Jaime L, Rodríguez-Meizoso I, Cifuentes A, Santoyo S, Suarez S, Ibáñez E, Señorans FJ. Pressurized liquids as an alternative process to antioxidant carotenoids’ extraction from Haematococcus pluvialis microalgae. LWT Food Sci Technol. 2010;43:105–12.

    CAS  Article  Google Scholar 

  47. Pan JL, Wang HM, Chen CY, Chang JS. Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier. Eng Life Sci. 2012;12:638–47.

    CAS  Article  Google Scholar 

  48. Wang L, Yang B, Yan B, Yao X. Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil. Innov Food Sci Emerg Technol. 2012;13:120–7.

    CAS  Article  Google Scholar 

  49. Rodríguez-Meizoso I, Jaime L, Santoyo S, Cifuentes A, García-Blairsy Reina G, Señoráns FJ, Ibáñez E. Pressurized fluid extraction of bioactive compounds from Phormidium species. J Agric Food Chem. 2008;56:3517–23.

    Article  CAS  PubMed  Google Scholar 

  50. Herrero M, Mendiola JA, Plaza M, Ibáñez E. Screening for bioactive compounds from algae. Adv Biofuels Bioprod. 2012;9781461433:833–72.

    Google Scholar 

  51. Ota M, Watanabe H, Kato Y, Watanabe M, Sato Y, Smith RL, Inomata H. Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing. J Sep Sci. 2009;32:2327–35.

    CAS  Article  PubMed  Google Scholar 

  52. Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta. 2003;356:328–34.

    CAS  Article  Google Scholar 

  53. Neumann U, Louis S, Gille A, Derwenskus F, Schmid-Staiger U, Briviba K, Bischoff SC (2018) Anti-inflammatory effects of Phaeodactylum tricornutum extracts on human blood mononuclear cells and murine macrophages. J Appl Phycol. 2018; pp 1–10.

  54. Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, Pan CH. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol. 2012;166:1843–55.

    CAS  Article  PubMed  Google Scholar 

  55. Castro-Puyana M, Herrero M, Urreta I, Mendiola JA, Cifuentes A, Ibáñez E, Suárez-Alvarez S. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2013;405:4607–16.

    CAS  Article  PubMed  Google Scholar 

  56. Abrahamsson V, Rodriguez-Meizoso I, Turner C. Determination of carotenoids in microalgae using supercritical fluid extraction and chromatography. J Chromatogr A. 2012;1250:63–8.

    CAS  Article  PubMed  Google Scholar 

  57. Yen HW, Chiang WC, Sun CH. Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. J Taiwan Inst Chem Eng. 2012;43:53–7.

    CAS  Article  Google Scholar 

  58. Macías-Sánchez MD, Fernández-Sevilla JM, Fernández FGA, García MCC, Grima EM. Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem. 2010;123:928–35.

    Article  CAS  Google Scholar 

  59. Ruen-Ngam D, Shotipruk A, Pavasant P, Machmudah S, Goto M. Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem Eng Technol. 2012;35:255–60.

    CAS  Article  Google Scholar 

  60. Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, Hasegawa T. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol. 2009;84:657–61.

    CAS  Article  Google Scholar 

  61. Nobre BP, Villalobos F, Barragán BE, Oliveira AC, Batista AP, Marques PA, Mendes RL, Sovová H, Palavra AF, Gouveia L. A biorefinery from Nannochloropsis sp. microalga—extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol. 2013;135:128–36.

    CAS  Article  PubMed  Google Scholar 

  62. Koo SY, Cha KH, Song DG, Chung D, Pan CH. Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. J Appl Phycol. 2012;24:725–30.

    CAS  Article  Google Scholar 

  63. Liau BC, Hong SE, Chang LP, Shen CT, Li YC, Wu YP, Jong TT, Shieh CJ, Hsu SL, Chang CMJ. Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography. Sep Purif Technol. 2011;78:1–8.

    CAS  Article  Google Scholar 

  64. Liau BC, Shen CT, Liang FP, Hong SE, Hsu SL, Jong TT, Chang CMJ. Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. J Supercrit Fluids. 2010;55:169–75.

    CAS  Article  Google Scholar 

  65. Vermerris W, Nicholson R. Phenolic compound biochemistry. Dordrecht: Springer; 2006.

    Google Scholar 

  66. J.B.Harbone. General procedures and measurement of total phenolics. In: Bryant J, editor. Methods in plant biochemistry, vol. 1. San Diego: Elsevier; 1989. p. 1–28.

    Google Scholar 

  67. Li YX, Wijesekara I, Li Y, Kim SK. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011;46:2219–24.

    CAS  Article  Google Scholar 

  68. Kadam SU, Álvarez C, Tiwari BK, O’Donnell CP. Extraction of biomolecules from seaweeds. In: Tiwari BK, Troy D, editors. Seaweed sustainability. San Diego: Elsevier Inc; 2015. p. 243–69.

    Chapter  Google Scholar 

  69. Klejdus B, Kopecký J, Benešová L, Vacek J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J Chromatogr A. 2009;1216:763–71.

    CAS  Article  PubMed  Google Scholar 

  70. Klejdus B, Lojková L, Plaza M, Šnóblová M, Štěrbová D. Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. J Chromatogr A. 2010;1217:7956–65.

    CAS  Article  PubMed  Google Scholar 

  71. Klejdus B, Lojková L, Vlcek J. Hyphenated solid phase extraction/supercritical fluid extraction methods for extraction of phenolic compounds from algae. Curr Anal Chem. 2014;10:86–98.

    CAS  Article  Google Scholar 

  72. Cha KH, Kang SW, Kim CY, Um BH, Na YR, Pan CH. Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agric Food Chem. 2010;58:4756–61.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank projects ABACUS (Algae for a Biomass Applied to the produCtion of added value compounds, grant agreement No 745668, funded by the Bio Based Industries Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme) and AGL2017-89417-R (MINECO, Spain) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Herrero.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gallego, R., Montero, L., Cifuentes, A. et al. Green Extraction of Bioactive Compounds from Microalgae. J. Anal. Test. 2, 109–123 (2018). https://doi.org/10.1007/s41664-018-0061-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0061-9

Keywords

  • Bioactives
  • Compressed fluids
  • Green extraction techniques
  • Microalgae
  • Pressurized liquids
  • Supercritical fluids