Advertisement

Journal of Analysis and Testing

, Volume 2, Issue 1, pp 26–44 | Cite as

SERS Nanotags and Their Applications in Biosensing and Bioimaging

  • Wei Zhang
  • Lianmei Jiang
  • James A. Piper
  • Yuling WangEmail author
Review

Abstract

Owing to the unique advantages of surface enhanced Raman scattering (SERS) in high sensitivity, specificity, multiplexing capability and photostability, it has been widely used in many applications, among which SERS biosensing and bioimaging are the focus in recent years. The successful applications of SERS for non-invasive biomarker detection and bioimaging under in vitro, in vivo and ex vivo conditions, offer significant clinical information to improve diagnostic and prognostic outcomes. This review provides recent developments and applications of SERS, in particular SERS nanotags in biosensing and bioimaging, describing case studies in which different types of biomarkers have been investigated, as well as outlining future challenges that need to be addressed before SERS sees both pathological and clinical use.

Keywords

SERS Plasmonic nanostructure Nanotags Biosensing Bioimaging Biomarker 

Notes

Acknowledgements

This work was supported by the Australian Research Council (ARC) Discovery Early Career Research Award (DECRA-DE 140101056) to Y.W.

References

  1. 1.
    Wang Y, Lee K, Irudayaraj J. Silver nanosphere SERS probes for sensitive identification of pathogens. J Phys Chem C. 2010;114(39):16122–8.CrossRefGoogle Scholar
  2. 2.
    Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26(2):163–6.CrossRefGoogle Scholar
  3. 3.
    Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem. 1977;84(1):1–20.CrossRefGoogle Scholar
  4. 4.
    Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99(15):5215–7.CrossRefGoogle Scholar
  5. 5.
    Otto A, Billmann J, Eickmans J, Ertürk U, Pettenkofer C. The “adatom model” of SERS (surface enhanced Raman scattering): the present status. Surf Sci. 1984;138(2–3):319–38.CrossRefGoogle Scholar
  6. 6.
    Bruckbauer A, Otto A. Spectroscopy of pyridine adsorbed on Raman single crystal copper electrodes. J Raman Spectrosc. 1998;29:665È72.CrossRefGoogle Scholar
  7. 7.
    Arenas JF, Woolley MS, Otero JC, Marcos JI. Charge-transfer processes in surface-enhanced Raman scattering. Franck-Condon active vibrations of pyrazine. J Phys Chem. 1996;100(8):3199–206.CrossRefGoogle Scholar
  8. 8.
    Le Ru E, Etchegoin P. Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Amsterdam: Elsevier; 2008.Google Scholar
  9. 9.
    Kahl M, Voges E. Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B. 2000;61(20):14078.CrossRefGoogle Scholar
  10. 10.
    Moskovits M, DiLella D, Maynard K. Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation. Langmuir. 1988;4(1):67–76.CrossRefGoogle Scholar
  11. 11.
    Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys. 1985;57(3):783.CrossRefGoogle Scholar
  12. 12.
    Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36(6–7):485–96.CrossRefGoogle Scholar
  13. 13.
    Schatz GC. Theoretical studies of surface enhanced Raman scattering. Acc Chem Res. 1984;17(10):370–6.CrossRefGoogle Scholar
  14. 14.
    Schatz G, Young M, Van Duyne R. Electromagnetic mechanism of SERS. Surface-enhanced Raman scattering. Berlin: Springer; 2006. p. 19–45.CrossRefGoogle Scholar
  15. 15.
    Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275(5303):1102–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Hatab NA, Hsueh C-H, Gaddis AL, Retterer ST, Li J-H, Eres G, et al. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010;10(12):4952–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Li S, Pedano ML, Chang S-H, Mirkin CA, Schatz GC. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett. 2010;10(5):1722–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee SJ, Morrill AR, Moskovits M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc. 2006;128(7):2200–1.CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang J, Bosnick K, Maillard M, Brus L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. Hamilton: ACS Publications; 2003.Google Scholar
  20. 20.
    Wang Y, Irudayaraj J. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Phil Trans R Soc B. 2013;368(1611):20120026.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schlücker S. SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem. 2009;10(9–10):1344–54.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Y, Schlucker S. Rational design and synthesis of SERS labels. Analyst. 2013;138(8):2224–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR, et al. Label-free biomarker detection from whole blood. Nat Nanotechnol. 2010;5(2):138–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Laxman B, Morris DS, Yu J, Siddiqui J, Cao J, Mehra R, et al. A First-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 2008;68(3):645–9.CrossRefGoogle Scholar
  25. 25.
    Zhang A, Sun H, Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl Biochem Biotechnol. 2012;168(6):1718–27.CrossRefPubMedGoogle Scholar
  26. 26.
    Lane LA, Qian X, Nie S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev. 2015;115(19):10489–529.CrossRefPubMedGoogle Scholar
  27. 27.
    Chan ECY, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, et al. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res. 2008;8(1):352–61.CrossRefGoogle Scholar
  28. 28.
    Jia C-P, Zhong X-Q, Hua B, Liu M-Y, Jing F-X, Lou X-H, et al. Nano-ELISA for highly sensitive protein detection. Biosens Bioelectron. 2009;24(9):2836–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31(4):249–57.CrossRefPubMedGoogle Scholar
  30. 30.
    Li Y, Wang Z, Mu X, Ma A, Guo S. Raman tags: novel optical probes for intracellular sensing and imaging. Biotechnol Adv. 2017;35(2):168–77.CrossRefPubMedGoogle Scholar
  31. 31.
    Fabris L. Gold-based SERS tags for biomedical imaging. J Opt. 2015;17(11):114002.CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Hong H, Myklejord DV, Cai W. Molecular imaging with SERS-active nanoparticles. Small. 2011;7(23):3261–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fabris L. SERS tags: the next promising tool for personalized cancer detection? Chem Nano Mat. 2016;2(4):249–58.Google Scholar
  34. 34.
    Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP. SERS: materials, applications, and the future. Mater Today. 2012;15(1):16–25.CrossRefGoogle Scholar
  35. 35.
    Kneipp J, Kneipp H, Wittig B, Kneipp K. Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotechnol Biol Med. 2010;6(2):214–26.CrossRefGoogle Scholar
  36. 36.
    Seney CS, Gutzman BM, Goddard RH. Correlation of size and surface-enhanced Raman scattering activity of optical and spectroscopic properties for silver nanoparticles. J Phys Chem C. 2008;113(1):74–80.CrossRefGoogle Scholar
  37. 37.
    Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–71.CrossRefPubMedGoogle Scholar
  38. 38.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2007;2(3):107–18.CrossRefGoogle Scholar
  39. 39.
    Van Duyne R, Hulteen J, Treichel D. Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J Chem Phys. 1993;99(3):2101–15.CrossRefGoogle Scholar
  40. 40.
    Qiu C, Zhou H, Yang H, Chen M, Guo Y, Sun L. Investigation of n-layer graphenes as substrates for Raman enhancement of crystal violet. J Phys Chem C. 2011;115(20):10019–25.CrossRefGoogle Scholar
  41. 41.
    Yang L, Gong M, Jiang X, Yin D, Qin X, Zhao B, et al. Investigation on SERS of different phase structure TiO2 nanoparticles. J Raman Spectrosc. 2015;46(3):287–92.CrossRefGoogle Scholar
  42. 42.
    Livingstone R, Zhou X, Tamargo MC, Lombardi JR, Quagliano LG, Jean-Mary F. Surface enhanced Raman spectroscopy of pyridine on CdSe/ZnBeSe quantum dots grown by molecular beam epitaxy. J Phys Chem C. 2010;114(41):17460–4.CrossRefGoogle Scholar
  43. 43.
    Vo-Dinh T, Liu Y, Fales AM, Ngo H, Wang HN, Register JK, et al. SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley interdiscip Rev Nanomed Nanobiotechnol. 2015;7(1):17–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Li W, Zamani R, Rivera Gil P, Pelaz B, Ibáñez M, Cadavid D, et al. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J Am Chem Soc. 2013;135(19):7098–101.CrossRefPubMedGoogle Scholar
  45. 45.
    Guo P, Sikdar D, Huang X, Si KJ, Xiong W, Gong S, et al. Plasmonic core–shell nanoparticles for SERS detection of the pesticide thiram: size-and shape-dependent Raman enhancement. Nanoscale. 2015;7(7):2862–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Benz F, Chikkaraddy R, Salmon A, Ohadi H, de Nijs B, Mertens J, et al. SERS of individual nanoparticles on a mirror: size does matter, but so does shape. J Phys Chem Lett. 2016;7(12):2264–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lu G, Forbes TZ, Haes AJ. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst. 2016;141(17):5137–43.CrossRefPubMedGoogle Scholar
  48. 48.
    Brazhe N, Parshina E, Khabatova V, Semenova A, Brazhe A, Yusipovich A, et al. Tuning SERS for living erythrocytes: focus on nanoparticle size and plasmon resonance position. J Raman Spectrosc. 2013;44(5):686–94.CrossRefGoogle Scholar
  49. 49.
    Mir-Simon B, Morla-Folch J, Gisbert-Quilis P, Pazos-Perez N, H-n Xie, Bastús NG, et al. SERS efficiencies of micrometric polystyrene beads coated with gold and silver nanoparticles: the effect of nanoparticle size. J Opt. 2015;17(11):114012.CrossRefGoogle Scholar
  50. 50.
    Hu C, Shen J, Yan J, Zhong J, Qin W, Liu R, et al. Highly narrow nanogap-containing Au@ Au core–shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Nanoscale. 2016;8(4):2090–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Lin K-Q, Yi J, Hu S, Liu B-J, Liu J-Y, Wang X, et al. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J Phys Chem C. 2016;120(37):20806–13.CrossRefGoogle Scholar
  52. 52.
    Zheng P, Li M, Jurevic R, Cushing SK, Liu Y, Wu N. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver (I) and mercury (II) in human saliva. Nanoscale. 2015;7(25):11005–12.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yue W, Yang Y, Wang Z, Han J, Syed A, Chen L, et al. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes. J Phys D Appl Phys. 2012;45(42):425401.CrossRefGoogle Scholar
  54. 54.
    Kahraman M, Wachsmann-Hogiu S. Label-free and direct protein detection on 3D plasmonic nanovoid structures using surface-enhanced Raman scattering. Anal Chim Acta. 2015;856:74–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Neill JD, Ridpath JF. Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal Chem. 2005;77(19):6147–54.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Liu S, Zheng X, Song L, Liu W, Yao T, Sun Z, et al. Partial-surface-passivation strategy for transition-metal-based copper–gold nanocage. Chem Commun. 2016;52(39):6617–20.CrossRefGoogle Scholar
  58. 58.
    Wang M, Cao X, Lu W, Tao L, Zhao H, Wang Y, et al. Surface-enhanced Raman scattering immunoassay for carcinoembryonic antigen based on gold nanostars. J Nanosci Nanotechnol. 2016;16(7):6711–8.CrossRefGoogle Scholar
  59. 59.
    Zhang Q, Moran CH, Xia X, Rycenga M, Li N, Xia Y. Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced Raman scattering (SERS) properties. Langmuir. 2012;28(24):9047–54.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J, Xu H. Multipolar plasmon resonances in individual Ag nanorice. ACS Nano. 2010;4(5):2649–54.CrossRefPubMedGoogle Scholar
  61. 61.
    Boca SC, Farcau C, Astilean S. The study of Raman enhancement efficiency as function of nanoparticle size and shape. Nucl Instrum Methods Phys Res, Sect B. 2009;267(2):406–10.CrossRefGoogle Scholar
  62. 62.
    Yoon JK, Kim K, Shin KS. Raman scattering of 4-aminobenzenethiol sandwiched between Au nanoparticles and a macroscopically smooth Au substrate: effect of size of Au nanoparticles. J Phys Chem C. 2009;113(5):1769–74.CrossRefGoogle Scholar
  63. 63.
    Kahraman M, Mullen ER, Korkmaz A, Wachsmann-Hogiu S. Fundamentals and applications of SERS-based bioanalytical sensing. Nanophotonics. 2017;6(5):831–52.CrossRefGoogle Scholar
  64. 64.
    Cinel NA, Bütün S, Ertaş G, Özbay E. ‘Fairy Chimney’-shaped tandem metamaterials as double resonance SERS substrates. Small. 2013;9(4):531–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Laing S, Jamieson LE, Faulds K, Graham D. Surface-enhanced Raman spectroscopy for in vivo biosensing. Nature Reviews Chemistry. 2017;1(8):0060.CrossRefGoogle Scholar
  66. 66.
    Küstner B, Gellner M, Schütz M, Schöppler F, Marx A, Ströbel P, et al. SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem Int Ed. 2009;48(11):1950–3.CrossRefGoogle Scholar
  67. 67.
    Graham D, Faulds K, Smith WE. Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chem Commun. 2006;42:4363–71.CrossRefGoogle Scholar
  68. 68.
    Graham D, Smith WE, Linacre AM, Munro CH, Watson ND, White PC. Selective detection of deoxyribonucleic acid at ultralow concentrations by SERRS. Anal Chem. 1997;69(22):4703–7.CrossRefGoogle Scholar
  69. 69.
    Graham D, Mallinder BJ, Smith WE. Surface-enhanced resonance Raman scattering as a novel Method of DNA discrimination. Angew Chem. 2000;112(6):1103–5.CrossRefGoogle Scholar
  70. 70.
    Faulds K, McKenzie F, Smith WE, Graham D. Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering. Angew Chem. 2007;119(11):1861–3.CrossRefGoogle Scholar
  71. 71.
    Indrasekara A, Paladini BJ, Naczynski DJ, Starovoytov V, Moghe PV, Fabris L. Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection. Advanced healthcare materials. 2013;2(10):1370–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Mulvaney SP, Musick MD, Keating CD, Natan MJ. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir. 2003;19(11):4784–90.CrossRefGoogle Scholar
  73. 73.
    Doering WE, Nie S. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal Chem. 2003;75(22):6171–6.CrossRefPubMedGoogle Scholar
  74. 74.
    Tripp RA, Dluhy RA, Zhao Y. Novel nanostructures for SERS biosensing. Nano Today. 2008;3(3):31–7.CrossRefGoogle Scholar
  75. 75.
    Qian XM, Nie SM. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev. 2008;37(5):912–20.CrossRefPubMedGoogle Scholar
  76. 76.
    Li W, Camargo PH, Lu X, Xia Y. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009;9(1):485–90.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lim DK, Jeon KS, Hwang JH, Kim H, Kwon S, Suh YD, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol. 2011;6(7):452–60.CrossRefPubMedGoogle Scholar
  78. 78.
    Liu R, Liu B, Guan G, Jiang C, Zhang Z. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays. Chem Commun. 2012;48(75):9421–3.CrossRefGoogle Scholar
  79. 79.
    Cao J, Zhao D, Mao Q. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper. Analyst. 2017;142(4):596–602.CrossRefPubMedGoogle Scholar
  80. 80.
    Zheng X-S, Hu P, Cui Y, Zong C, Feng J-M, Wang X, et al. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal Chem. 2014;86(24):12250–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Gühlke M, Heiner Z, Kneipp J. Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures. Phys Chem Chem Phys. 2015;17(39):26093–100.CrossRefPubMedGoogle Scholar
  82. 82.
    Wang F, Widejko RG, Yang Z, Nguyen KT, Chen H, Fernando LP, et al. Surface-enhanced Raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles. Anal Chem. 2012;84(18):8013–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Jamieson LE, Jaworska A, Jiang J, Baranska M, Harrison D, Campbell C. Simultaneous intracellular redox potential and pH measurements in live cells using SERS nanosensors. Analyst. 2015;140(7):2330–5.CrossRefPubMedGoogle Scholar
  84. 84.
    Liu Y, Yuan H, Fales AM, Vo-Dinh T. pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies. J Raman Spectrosc. 2013;44(7):980–6.CrossRefGoogle Scholar
  85. 85.
    Chen P, Wang Z, Zong S, Chen H, Zhu D, Zhong Y, et al. A wide range optical pH sensor for living cells using Au@ Ag nanoparticles functionalized carbon nanotubes based on SERS signals. Anal Bioanal Chem. 2014;406(25):6337–46.CrossRefPubMedGoogle Scholar
  86. 86.
    Kneipp J, Kneipp H, Wittig B, Kneipp K. One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett. 2007;7(9):2819–23.CrossRefPubMedGoogle Scholar
  87. 87.
    Kneipp J, Kneipp H, Wittig B, Kneipp K. Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C. 2010;114(16):7421–6.CrossRefGoogle Scholar
  88. 88.
    Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T. Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem. 2004;76(23):7064–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Kong KV, Dinish U, Lau WKO, Olivo M. Sensitive SERS-pH sensing in biological media using metal carbonyl functionalized planar substrates. Biosens Bioelectron. 2014;54:135–40.CrossRefPubMedGoogle Scholar
  90. 90.
    Pang Y, Wang J, Xiao R, Wang S. SERS molecular sentinel for the RNA genetic marker of PB1-F2 protein in highly pathogenic avian influenza (HPAI) virus. Biosens Bioelectron. 2014;61:460–5.CrossRefPubMedGoogle Scholar
  91. 91.
    Gu X, Yan Y, Jiang G, Adkins J, Shi J, Jiang G, et al. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Anal Bioanal Chem. 2014;406(7):1885–94.CrossRefPubMedGoogle Scholar
  92. 92.
    Zhou L, Ding F, Chen H, Ding W, Zhang W, Chou SY. Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal Chem. 2012;84(10):4489–95.CrossRefPubMedGoogle Scholar
  93. 93.
    Lv Y, Qin Y, Svec F, Tan T. Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens Bioelectron. 2016;80:433–41.CrossRefPubMedGoogle Scholar
  94. 94.
    Shin MH, Hong W, Sa Y, Chen L, Jung Y-J, Wang X, et al. Multiple detection of proteins by SERS-based immunoassay with core shell magnetic gold nanoparticles. Vib Spectrosc. 2014;72:44–9.CrossRefGoogle Scholar
  95. 95.
    Wang Y, Vaidyanathan R, Shiddiky MJ, Trau M. Enabling rapid and specific surface-enhanced Raman scattering immunoassay using nanoscaled surface shear forces. ACS Nano. 2015;9(6):6354–62.CrossRefPubMedGoogle Scholar
  96. 96.
    Kamil Reza K, Wang J, Vaidyanathan R, Dey S, Wang Y, Trau M. Electrohydrodynamic-induced SERS immunoassay for extensive multiplexed biomarker sensing. Small. 2017;13(9):1602902.CrossRefGoogle Scholar
  97. 97.
    Wang Y, Lee K, Irudayaraj J. SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun. 2010;46(4):613–5.CrossRefGoogle Scholar
  98. 98.
    Wang Y, Rauf S, Grewal YS, Spadafora LJ, Shiddiky MJ, Cangelosi GA, et al. Duplex microfluidic SERS detection of pathogen antigens with nanoyeast single-chain variable fragments. Anal Chem. 2014;86(19):9930–8.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, et al. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano. 2017;11(5):4926–33.CrossRefPubMedGoogle Scholar
  100. 100.
    Ngo HT, Wang H-N, Fales AM, Vo-Dinh T. Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal Chem. 2013;85(13):6378–83.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Qi J, Zeng J, Zhao F, Lin SH, Raja B, Strych U, et al. Label-free, in situ SERS monitoring of individual DNA hybridization in microfluidics. Nanoscale. 2014;6(15):8521–6.CrossRefPubMedGoogle Scholar
  102. 102.
    Bi L, Rao Y, Tao Q, Dong J, Su T, Liu F, et al. Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosens Bioelectron. 2013;43:193–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Liu M, Wang Z, Zong S, Zhang R, Zhu D, Xu S, et al. SERS-based DNA detection in aqueous solutions using oligonucleotide-modified Ag nanoprisms and gold nanoparticles. Anal Bioanal Chem. 2013;405(18):6131–6.CrossRefPubMedGoogle Scholar
  104. 104.
    Chen Y, Chen G, Zheng X, He C, Feng S, Chen Y, et al. Discrimination of gastric cancer from normal by serum RNA based on surface-enhanced Raman spectroscopy (SERS) and multivariate analysis. Med Phys. 2012;39(9):5664–8.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Guven B, Dudak FC, Boyaci IH, Tamer U, Ozsoz M. SERS-based direct and sandwich assay methods for mir-21 detection. Analyst. 2014;139(5):1141–7.CrossRefPubMedGoogle Scholar
  106. 106.
    Wang X, Choi N, Cheng Z, Ko J, Chen L, Choo J. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal Chem. 2017;89(2):1163–9.CrossRefPubMedGoogle Scholar
  107. 107.
    Wang Y, Wee EJ, Trau M. Highly sensitive DNA methylation analysis at CpG resolution by surface-enhanced Raman scattering via ligase chain reaction. Chem Commun. 2015;51(54):10953–6.CrossRefGoogle Scholar
  108. 108.
    Wee EJ, Wang Y, Tsao SC, Trau M. Simple, sensitive and accurate multiplex detection of clinically important melanoma dna mutations in circulating tumour DNA with SERS nanotags. Theranostics. 2016;6(10):1506–13.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Koo KM, Wee EJ, Mainwaring PN, Wang Y, Trau M. Toward precision medicine: a cancer molecular subtyping Nano-strategy for RNA biomarkers in tumor and urine. Small. 2016;12(45):6233–42.CrossRefPubMedGoogle Scholar
  110. 110.
    Gupta VK, Atar N, Yola ML, Eryılmaz M, Torul H, Tamer U, et al. A novel glucose biosensor platform based on Ag@ AuNPs modified graphene oxide nanocomposite and SERS application. J Coll Interface Sci. 2013;406:231–7.CrossRefGoogle Scholar
  111. 111.
    Shafer-Peltier KE, Haynes CL, Glucksberg MR, Van Duyne RP. Toward a glucose biosensor based on surface-enhanced Raman scattering. J Am Chem Soc. 2003;125(2):588–93.CrossRefPubMedGoogle Scholar
  112. 112.
    Kong KV, Lam Z, Lau WKO, Leong WK, Olivo M. A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose. J Am Chem Soc. 2013;135(48):18028–31.CrossRefPubMedGoogle Scholar
  113. 113.
    Ding X, Kong L, Wang J, Fang F, Li D, Liu J. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl Mater Interfaces. 2013;5(15):7072–8.CrossRefPubMedGoogle Scholar
  114. 114.
    Crane LG, Wang D, Sears LM, Heyns B, Carron K. SERS surfaces modified with a 4-(2-pyridylazo) resorcinol disulfide derivative: detection of copper, lead, and cadmium. Anal Chem. 1995;67(2):360–4.CrossRefGoogle Scholar
  115. 115.
    Wang Y, Irudayaraj J. A SERS DNAzyme biosensor for lead ion detection. Chem Commun. 2011;47(15):4394–6.CrossRefGoogle Scholar
  116. 116.
    Li F, Wang J, Lai Y, Wu C, Sun S, He Y, et al. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens Bioelectron. 2013;39(1):82–7.CrossRefPubMedGoogle Scholar
  117. 117.
    Žukovskaja O, Jahn IJ, Weber K, Cialla-May D, Popp J. Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique. Sensors. 2017;17(8):1704.CrossRefPubMedCentralGoogle Scholar
  118. 118.
    Choi CJ, Wu H-Y, George S, Weyhenmeyer J, Cunningham BT. Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites. Lab Chip. 2012;12(3):574–81.CrossRefPubMedGoogle Scholar
  119. 119.
    Yang T, Guo X, Wang H, Fu S, Yang H. Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosens Bioelectron. 2015;68:350–7.CrossRefPubMedGoogle Scholar
  120. 120.
    Šimáková P, Kočišová E, Procházka M. Sensitive Raman spectroscopy of lipids based on drop deposition using DCDR and SERS. J Raman Spectrosc. 2013;44(11):1479–82.CrossRefGoogle Scholar
  121. 121.
    Levin CS, Kundu J, Janesko BG, Scuseria GE, Raphael RM, Halas NJ. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies. J Physical Chemistry B. 2008;112(45):14168–75.CrossRefGoogle Scholar
  122. 122.
    Xie Y, Xu L, Wang Y, Shao J, Wang L, Wang H, et al. Label-free detection of the foodborne pathogens of Enterobacteriaceae by surface-enhanced Raman spectroscopy. Anal Methods. 2013;5(4):946–52.CrossRefGoogle Scholar
  123. 123.
    Wang Y, Ravindranath S, Irudayaraj J. Separation and detection of multiple pathogens in a food matrix by magnetic SERS nanoprobes. Anal Bioanal Chem. 2011;399(3):1271–8.CrossRefPubMedGoogle Scholar
  124. 124.
    Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.PubMedGoogle Scholar
  125. 125.
    Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ. Imaging pH and metastasis. NMR Biomed. 2011;24(6):582–91.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R. SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev. 2008;37(5):1001–11.CrossRefPubMedGoogle Scholar
  127. 127.
    Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtuluş Ö, Lee SH, et al. Recent progress in SERS biosensing. Phys Chem Chem Phys. 2011;13(24):11551–67.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, et al. Food-related illness and death in the United States. Emerg Infect Dis. 1999;5(5):607–25.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Schütz M, Steinigeweg D, Salehi M, Kömpe K, Schlücker S. Hydrophilically stabilized gold nanostars as SERS labels for tissue imaging of the tumor suppressor p63 by immuno-SERS microscopy. Chem Commun. 2011;47(14):4216–8.CrossRefGoogle Scholar
  130. 130.
    Salehi M, Steinigeweg D, Ströbel P, Marx A, Packeisen J, Schlücker S. Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity. J Biophoton. 2013;6(10):785–92.Google Scholar
  131. 131.
    Potara M, Bawaskar M, Simon T, Gaikwad S, Licarete E, Ingle A, et al. Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells. Coll Surf B. 2015;133:296–303.CrossRefGoogle Scholar
  132. 132.
    Dinish US, Balasundaram G, Chang Y-T, Olivo M. Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep. 2014;4:4075.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Yuan H, Liu Y, Fales AM, Li YL, Liu J, Vo-Dinh T. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. Anal Chem. 2012;85(1):208–12.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Xiao M, Lin L, Li Z, Liu J, Hong S, Li Y, et al. SERS imaging of cell-surface biomolecules metabolically labeled with bioorthogonal Raman reporters. Chem Asian J. 2014;9(8):2040–4.CrossRefPubMedGoogle Scholar
  135. 135.
    Zhang Y, Qian J, Wang D, Wang Y, He S. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angewandte Chemie Int Ed. 2013;52(4):1148–51.CrossRefGoogle Scholar
  136. 136.
    McVeigh PZ, Mallia RJ, Veilleux I, Wilson BC. Widefield quantitative multiplex surface enhanced Raman scattering imaging in vivo. J Biomed Opt. 2013;18(4):046011.CrossRefPubMedGoogle Scholar
  137. 137.
    Niu X, Chen H, Wang Y, Wang W, Sun X, Chen L. Upconversion fluorescence-SERS dual-mode tags for cellular and in vivo imaging. ACS Appl Mater Interfaces. 2014;6(7):5152–60.CrossRefPubMedGoogle Scholar
  138. 138.
    Liu Y, Ashton JR, Moding EJ, Yuan H, Register JK, Fales AM, et al. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics. 2015;5(9):946–60.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Mallia RJ, McVeigh PZ, Veilleux I, Wilson BC. Filter-based method for background removal in high-sensitivity wide-field-surface-enhanced Raman scattering imaging in vivo. J Biomed Opt. 2012;17(7):0760171–5.CrossRefGoogle Scholar
  140. 140.
    Wang Y, Seebald JL, Szeto DP, Irudayaraj J. Biocompatibility and biodistribution of surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and multiplex imaging. ACS Nano. 2010;4(7):4039–53.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Yigit MV, Zhu L, Ifediba MA, Zhang Y, Carr K, Moore A, et al. Noninvasive MRI-SERS imaging in living mice using an innately bimodal nanomaterial. ACS Nano. 2010;5(2):1056–66.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Yigit MV, Medarova Z. In vivo and ex vivo applications of gold nanoparticles for biomedical SERS imagingi. Am J Nucl Med Mol Imaging. 2012;2(2):232–41.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small. 2011;7(5):625–33.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Chen Y, Zheng X, Chen G, He C, Zhu W, Feng S, et al. Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering. Int J Nanomed. 2012;7:73–82.Google Scholar
  145. 145.
    Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P. Immuno-Raman microspectroscopy: in situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J Raman Spectrosc. 2006;37(7):719–21.CrossRefGoogle Scholar
  146. 146.
    Lee S, Chon H, Lee J, Ko J, Chung BH, Lim DW, et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron. 2014;51:238–43.CrossRefPubMedGoogle Scholar
  147. 147.
    Nima ZA, Mahmood M, Xu Y, Mustafa T, Watanabe F, Nedosekin DA, et al. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances. Sci Rep. 2014;4:4752.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Liu R, Zhao J, Han G, Zhao T, Zhang R, Liu B, et al. Click-functionalized SERS nanoprobes with improved labeling efficiency and capability for cancer cell imaging. ACS Appl Mater Interfaces. 2017;9(44):38222–9.CrossRefPubMedGoogle Scholar
  149. 149.
    Oseledchyk A, Andreou C, Wall MA, Kircher MF. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano. 2017;11(2):1488–97.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China 2018

Authors and Affiliations

  1. 1.Department of Molecular SciencesMacquarie UniversitySydneyAustralia
  2. 2.ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)Macquarie UniversitySydneyAustralia
  3. 3.Department of Physics and AstronomyMacquarie UniversitySydneyAustralia

Personalised recommendations