Quantitative Analysis of Bisphenol A in Recycled Paper with a Novel Direct Inlet Probe-Atmospheric Pressure Photoionization–IonTrap-MS


A new ambient ion source was developed and its application to real samples has been demonstrated. This ion source is based on a previously build ion source using chemical ionization under atmospheric pressure and extractive electrospray ionization (DIP-APCI/EESI). To enhance the range of analytes, we added to this ion source a photoionization lamp to enable also photoionization, which allows the possibility to analyze polar (EESI), middle (APCI) and non-polar (APPI) analytes with the same source and with no or only a small change of the setup. In comparison with DIP-APCI, this ion source reaches similar analytical limits but shows better sensitivity for some aromatic and non-polar analytes. The analysis of bisphenol A from extracts of recycled paper demonstrates the use of this ion source for real samples. Quantification was possible by the use of a deuterated internal standard that was added to the papers before extraction. Here atmospheric pressure chemical ionization leads to bad results due to ion suppression, whereas atmospheric pressure photoionization shows results that fit to literature values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Pesheva M, Dimitrov M, Stoycheva TS. Carcinogen. InTech; 2012. doi:10.5772/2192.

  2. 2.

    Fürhacker M, Scharf S, Weber H. Bisphenol A: emissions from point sources. Chemosphere. 2000;41:751–6. doi:10.1016/S0045-6535(99)00466-X.

    Article  Google Scholar 

  3. 3.

    Michałowicz J. Bisphenol A—sources, toxicity and biotransformation. Environ Toxicol Pharmacol. 2014;37:738–58. doi:10.1016/j.etap.2014.02.003.

    Article  Google Scholar 

  4. 4.

    Geens T, Goeyens L, Kannan K, Neels H, Covac A. Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Sci Total Environ. 2012;435–436:30–3. doi:10.1016/j.scitotenv.2012.07.001.

    Article  Google Scholar 

  5. 5.

    Terasaki M, Shiraishi F, Fukazawa H, Makino M. Occurrence and estrogenicity of phenolics in paper-recycling process water: pollutants origination from thermal paper in waste water. Environ Toxicol Chem. 2007;26:2356–66. doi:10.1177/1559325815598308.

    CAS  Article  Google Scholar 

  6. 6.

    Suciu NA, Tiberto F, Vasileiadis S, Lamastra L, Trevisan M. Recycled paper–paperboard for food contact materials: contaminants suspected and migration into foods and food simulant. Food Chem. 2013;141:4146–51. doi:10.1016/j.foodchem.2013.07.014.

    CAS  Article  Google Scholar 

  7. 7.

    Vinggaard AM, Körner W, Lund KH, Bolz U, Petersen JH. Identification and quantification of estrogenic compounds in recycled and virgin paper for household use as determined by an in vitro yeast estrogen screen and chemical analysis. Chem Res Toxicol. 2000;13:1214–22. doi:10.1021/tx000146b.

    CAS  Article  Google Scholar 

  8. 8.

    Takáts Z, Wiseman JM, Gologan B, Cooks G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306:471–3. doi:10.1126/science.1104404.

    Article  Google Scholar 

  9. 9.

    Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem. 2005;77:2297–302. doi:10.1021/ac050162j.

    CAS  Article  Google Scholar 

  10. 10.

    Huang M-Z, Cheng S-C, Cho Y-T, Shiea J. Ambient ionization mass spectrometry: a tutorial. Anal Chim Acta. 2011;702:1–15. doi:10.1016/j.aca.2011.06.017.

    CAS  Article  Google Scholar 

  11. 11.

    Krieger S, Von Throtha A, Leung KS-Y, Schmitz OJ. Development, optimization, and use of an APCI source with temperature-controlled vaporization of solid and liquid samples. Anal Bioanal Chem. 2013;405:1373–81. doi:10.1007/s00216-012-6531-4.

    CAS  Article  Google Scholar 

  12. 12.

    Krieger S, Schmitz OJ. Non-destructive plasticizer screening using a direct inlet probe-atmospheric pressure chemical ionization source and ion trap mass spectrometry. Rapid Commun Mass Spectrom. 2014;28:1862–70. doi:10.1002/rcm.6972.

    CAS  Article  Google Scholar 

  13. 13.

    Krieger S, Hayen H, Schmitz OJ. Quantification of coumarin in cinnamon and woodruff beverages using DIP-APCI-MS and LC-MS. Anal Bioanal Chem. 2013;405:8337–45. doi:10.1007/s00216-013-7238-x.

    CAS  Article  Google Scholar 

  14. 14.

    Kauppila TJ, Syage JA, Benter T. Recent developments in atmospheric pressure photoionization-mass spectrometry. Mass Spectrom Rev. 2017;36:423–49. doi:10.1002/mas.21477.

    CAS  Article  Google Scholar 

  15. 15.

    Kauppila TJ, Kersten H, Benter T. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization. J Am Soc Mass Spectrom. 2014;25:1870–81. doi:10.1007/s13361-014-0988-7.

    CAS  Article  Google Scholar 

  16. 16.

    Robb B, Covey TR, Bruins AP. Atmospheric pressure photoionization: an ionization method for liquid chromatography–mass spectrometry. Anal Chem. 2000;72:3653–9. doi:10.1021/ac0001636.

    CAS  Article  Google Scholar 

  17. 17.

    Klee S, Albrecht S, Derpmann V, Kersten H, Benter T. Generation of ion-bound solvent clusters as reactant ions in dopant-assisted APPI and APLI. Anal Bioanal Chem. 2013;405:6933–51. doi:10.1007/s00216-013-7114-8.

    CAS  Article  Google Scholar 

  18. 18.

    Robb DB, Blades MWJ. Factors affecting primary ionization in dopant-assisted atmospheric pressure photoionization (DA-APPI) for LC/MS. Am Soc Mass Spectrom. 2006;17:130–8. doi:10.1016/j.jasms.2005.09.013.

    CAS  Article  Google Scholar 

  19. 19.

    Schiewek R, Schellenträger M, Mönnikes R, Lorenz M, Giese R, Brockmann KJ, Gäb S, Benter Th, Schmitz OJ. Ultrasensitive determination of polycyclic aromatic compounds with atmospheric-pressure laser ionization as an interface for GC/MS. Anal Chem. 2007;79:4135–40. doi:10.1021/ac0700631.

    CAS  Article  Google Scholar 

  20. 20.

    Lenzen C, Winterfeld GA, Schmitz OJ. Comparison of piracetam measured with HPLC-DAD, HPLC-ESI-MS, DIP-APCI-MS, and a newly developed and optimized DIP-ESI-MS. Anal Bioanal Chem. 2016;408:4103–10. doi:10.1007/s00216-016-9499-7.

    CAS  Article  Google Scholar 

  21. 21.

    Zscheppank C, Telgheder U, Molt K. Stir-bar sorptive extraction and TDS-IMS for the detection of pesticides in aqueous samples. Int J Ion Mobil Spectrom. 2012;15(4):257–64. doi:10.1007/s12127-012-0097-x.

    CAS  Article  Google Scholar 

Download references


We are thankful to iGenTrax UG and SIM GmbH for technical support. Furthermore, we acknowledge AIF for financial support due to project number KF2210314NT3.

Author information



Corresponding author

Correspondence to Oliver J. Schmitz.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horst, S., Schmitz, O.J. Quantitative Analysis of Bisphenol A in Recycled Paper with a Novel Direct Inlet Probe-Atmospheric Pressure Photoionization–IonTrap-MS. J. Anal. Test. 1, 255–263 (2017). https://doi.org/10.1007/s41664-017-0034-4

Download citation


  • Ambient ionization
  • Bisphenol A
  • Atmospheric pressure photoionization
  • Recycled paper