Skip to main content
Log in

In Situ Growth of Flexible Polyphenylene-Conjugated Microporous Polymer Films for Fluorescence Detection of the Total Quantity of Developing Agents and Their Oxidation Products

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Conjugated microporous polymers (CMPs) are a kind of porous skeleton polymers, which are characterized by extended conjugated skeletons, large specific surface area and structure stability. In this work, a facile and versatile method was developed to fabricate flexible conjugated microporous polymer films for fast detecting the total quantity of developing agents and their oxidation products. Conjugated microporous polymer films were synthesized through in situ one-step approach by Suzuki coupling reaction. With such merits such as intense luminescence, easy synthesis and disposability, the polymer films were employed to detect developers based on fluorescence quenching in the printing wastewater. A linear response to p-benzoquinone, oxidation product of developers, was obtained in the range of 0.05–0.5 μmol·L−1, with a detection limit of 0.015 μmol·L−1. The strategy for in situ growth of flexible polyphenylene-conjugated microporous polymer (PP-CMP) films seems to be a very portable and general method for meeting different analytic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu Q, Tang Z, Wu M, Zhou Z. Design, preparation and application of conjugated microporous polymers. Polym Int. 2014;63:381–92.

    Article  CAS  Google Scholar 

  2. James SL. Metal-organic frameworks. Chem Soc Rev. 2003;32:276.

    Article  CAS  Google Scholar 

  3. Férey G. Hybrid porous solids: past, present, future. Chem Soc Rev. 2008;37:191–214.

    Article  Google Scholar 

  4. Dawson R, Cooper AI, Adams DJ. Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers. Polym Int. 2012;62:345–52.

    Article  Google Scholar 

  5. Dawson R, Adams DJ, Cooper AI. Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci. 2011;2:1173–7.

    Article  CAS  Google Scholar 

  6. Su F, Bray CL, Carter BO, Overend G, Cropper C, Iggo JA, Khimyak YZ, Fogg AM, Cooper AI. Reversible hydrogen storage in hydrogel clathrate hydrates. Adv Mater. 2009;21:2382–6.

    Article  CAS  Google Scholar 

  7. Li A, Sun H, Tan D, Fan W, Wen S, Qing X, Li G, Li S, Deng W. Superhydrophobic conjugated microporous polymers for separation and adsorption. Energ Environ Sci. 2011;4:2062–5.

    Article  CAS  Google Scholar 

  8. Chen L, Yang Y, Jiang D. CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J Am Chem Soc. 2010;132:9138–43.

    Article  CAS  Google Scholar 

  9. Sprick RS, Jiang J, Bonillo B, Ren S, Ratvijitvech T, Guiglion P, Zwijnenburg MA, Adams DJ, Cooper AI. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J Am Chem Soc. 2015;137:3265–70.

    Article  CAS  Google Scholar 

  10. Liu J, Yee K, Kam-Wing K, Zhang KY, To W, Che C, Xu Z. Selective Ag (I) binding, H2S sensing, and white-light emission from an easy-to-make porous conjugated polymer. J Am Chem Soc. 2014;136:2818–24.

    Article  CAS  Google Scholar 

  11. Lee W, Jin Y, Park L, Kwak G. Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv Mater. 2012;24:5604–9.

    Article  CAS  Google Scholar 

  12. Xu Y, Nagai A, Jiang D. Core–shell conjugated microporous polymers: a new strategy for exploring color-tunable and -controllable light emissions. Chem Commun. 2013;49:1591–3.

    Article  CAS  Google Scholar 

  13. Urakami H, Zhang K, Vilela F. Modification of conjugated microporous poly-benzothiadiazole for photosensitized singlet oxygen generation in water. Chem Commun. 2013;49:2353–5.

    Article  CAS  Google Scholar 

  14. Chen L, Honsho Y, Seki S, Jiang D. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J Am Chem Soc. 2010;132:6742–8.

    Article  CAS  Google Scholar 

  15. Pan J, Jia S, Li G, Hu Y. Organic building block based microporous network SNW-1 coating fabricated by multilayer interbridging strategy for efficient enrichment of trace volatiles. Anal Chem. 2015;87:3373–81.

    Article  CAS  Google Scholar 

  16. Zhou L, Hu Y, Li G. Conjugated microporous polymers with built-in magnetic nanoparticles for excellent enrichment of trace hydroxylated polycyclic aromatic hydrocarbons in human urine. Anal Chem. 2016;88:6930–8.

    Article  CAS  Google Scholar 

  17. Zhang Y, Sigen A, Zou Y, Luo X, Li Z, Xia H, Liu X, Mu Y. Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer. J Mater Chem A. 2014;2:13422.

    Article  CAS  Google Scholar 

  18. Wei J, Zhang X, Zhao Y, Li R. Chiral conjugated microporous polymers as novel chiral fluorescence sensors for amino alcohols. Macromol Chem Phys. 2013;214:2232–8.

    CAS  Google Scholar 

  19. Zhang P, Guo J, Wang C. Magnetic CMP microspheres: multifunctional poly (phenylene ethynylene) frameworks with covalently built-in Fe3O4 nanocrystals exhibiting pronounced sensitivity for acetaminophen microdetection. J Mater Chem. 2012;22:21426–33.

    Article  CAS  Google Scholar 

  20. Gopalakrishnan D, Dichtel WR. Direct detection of RDX vapor using a conjugated polymer network. J Am Chem Soc. 2013;135:8357–62.

    Article  CAS  Google Scholar 

  21. Dichtel JLN, Dichtel WR. Conjugated porous polymers for TNT vapor detection. ACS Macro Lett. 2013;2:423–6.

    Article  Google Scholar 

  22. Liu X, Xu Y, Jiang D. Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J Am Chem Soc. 2012;134:8738–41.

    Article  CAS  Google Scholar 

  23. Gopalakrishnan D, Dichtel WR. Real-time, ultrasensitive detection of RDX vapors using conjugated network polymer thin films. Chem Mater. 2015;27:3813–6.

    Article  CAS  Google Scholar 

  24. Enguita FJ, Leitao AL. Hydroquinone: environmental pollution, toxicity, and microbial answers. Biomed Res. Int. 2013;2013:542168.

    Article  Google Scholar 

  25. Lin C, Sheu J, Wu H, Huang YJ. Determination of hydroquinone in cosmetic emulsion using microdialysis sampling coupled with high-performance liquid chromatography. Pharm Biomed. 2005;38:414–9.

    Article  CAS  Google Scholar 

  26. Sirajuddin, Bhanger MI, Niaz A, Shah A, Rauf A. Ultra-trace level determination of hydroquinone in waste photographic solutions by UV–vis spectrophotometry. Talanta. 2007;72:546–53.

    Article  CAS  Google Scholar 

  27. Chao Y, Zhang X, Liu L, Tian L, Pei M, Cao W. Determination of hydroquinone by flow injection chemiluminescence and using magnetic surface molecularly imprinted particles. Microchim Acta. 2015;182:943–8.

    Article  CAS  Google Scholar 

  28. Upan J, Reanpang P, Chailapakul O, Jakmunee J. Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone. Talanta. 2016;146:766–71.

    Article  CAS  Google Scholar 

  29. Yuan X, Yuan D, Zeng F, Zou W, Tzorbatzoglou F, Tsiakaras P, Wang Y. Preparation of graphitic mesoporous carbon for the simultaneous detection of hydroquinone and catechol. Appl. Catal. B-Environ. 2013;129:367–74.

    Article  CAS  Google Scholar 

  30. Yang H, Ting H, Shih Y. Self-validated detection of hydroquinone in medicated cosmetic products using a preanodized screen-printed ring disk carbon electrode. Anal Methods UK. 2016;8:5495–502.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work were supported by the National Natural Science Foundation of China (Nos. 21575168, 21277176, 21475153 and 21675178), the Guangdong Provincial Natural Science Foundation of China (No. 2015A030311020), the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China (No. 2015A030401036), and the Guangzhou Science and Technology Program of China(No. 201604020165), respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuling Hu or Gongke Li.

Additional information

L. Zhou and Y. Peng contributed equally to this paper.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Peng, Y., Hu, Y. et al. In Situ Growth of Flexible Polyphenylene-Conjugated Microporous Polymer Films for Fluorescence Detection of the Total Quantity of Developing Agents and Their Oxidation Products. J. Anal. Test. 1, 5 (2017). https://doi.org/10.1007/s41664-017-0006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-017-0006-8

Keywords

Navigation